GIPPSLAND PORTS

GEOTECHNICAL INVESTIGATION

LONG JETTY REHABILITATION

PORT WELSHPOOL

Report No: 113173

Date: 29 June 2011

GEOTECHNICAL INVESTIGATION

By

A.S. JAMES PTY LIMITED

15 Libbett Avenue, Clayton South Vic. 3169 Tel: 613 9547 4811 Fax: 613 9547 5393 E-mail: <u>asjames@ozemail.com.au</u>

THIS REPORT SHALL ONLY BE REPRODUCED IN FULL

15 Libbett Avenue Clayton South Vic 3169 Tel: (613) 9547 4811 Fax: (613) 9547 5393 E-mail: <u>asjames@ozemail.com.au</u>

1. INTRODUCTION

- **1.01 Investigation Requested By:** The geotechnical investigation was commissioned by Mr Gary Lugton of Gippsland Ports, in a purchase order (No: 30645) dated 24th March, 2011.
- **1.02 Purpose of Investigation:** It is proposed to rehabilitate the existing historic 'Long Jetty' at Port Welshpool. In order to derive the options for this potential rehabilitation it was required that a geotechnical investigation be undertaken. Herein it was required to drill four (6) boreholes along the length of the existing jetty, to determine the sub-seabed soil profile for piling conditions. A brief was provided requiring boreholes to extend to some 10.0m below seabed level.
- **1.03** <u>Geology:</u> The 1:250,000 Series Geological Survey of Victoria, Warragul Sheet indicates the subject site to be underlain by Quaternary deposits, including swamp and lagoon deposits, calcareous and siliceous sand sheets.
- 1.04 <u>Field Methods</u>: Each of the boreholes was drilled using a trailer mounted Gemco rotary drill rig, situated on various sections along the existing Long Jetty. Due to the removal of sections of the Jetty, the drill had to be moved to and from boreholes 5 and 6 by barge. As part of the investigation, the following field methods were incorporated:
 - i) Rotary Wash Boring: The boreholes were drilled using a 75 millimetre diameter tungsten triblade bit in conjunction with 90 millimetre diameter steel casing.
 - **ii)** Standard Penetration Testing: Standard penetration testing was conducted at regular intervals within each of the boreholes in accordance with the test procedure outlined in Australian Standard 1289, "Methods of Testing Soils For Engineering Purposes," Test Method 6.3.1, 1993.
 - iii) Logging of Soil Profiles: The soil profiles encountered in each of the boreholes were logged in accordance with Australian Standard AS 1726 1993, "Geotechnical Site Investigations."
- 1.05 <u>Laboratory Test Methods</u>: All soil samples were transferred to A.S. James' National Association of Testing Authorities registered Clayton South laboratory, where testing was undertaken by trained laboratory technicians. All laboratory testing was performed in strict accordance with the test methods outlined in Australian Standard AS 1289, "Method of Testing Soils for Engineering Purposes".

AS Test Method

1289 3.6.1

• Grain Size Distribution

2. RESULTS

2.01 <u>Borehole Locations:</u> Six (6) boreholes were drilled between 11^h May and 2nd June, 2011, at the approximate locations indicated on Figure 1.

The logs of the boreholes together with the results of standard penetration tests carried out in each of the boreholes are given on Figures 2 - 7.

Note: All borehole logs, test results and other depths given in this report are relative to the seabed level and this level relative to the existing jetty level is given on the logs.

2.02 <u>Sub-Surface Soil Profile:</u> As per the borehole investigation, the subsoil consists of grey silty sand throughout the depth investigated. The top 2.0m generally consists of loose sands and with increasing depth the SPT N-values are found to be increasing with the depth. The exception to this is approximately at 9.0m depth in borehole 6, a relatively low SPT N value of 7 was recorded whereas in the remaining boreholes high SPT N values were noted at this depth. The sand contained sea shells generally within the top 4 metres and each borehole intersected layers of 5mm quartz gravel beyond 3 metres. These layers of quartz gravel were typically 500mm in depth.

2.2 Laboratory Testing.

Good correlations exist between moisture content and strength in Silurian deposits.

2.2.1 <u>Test Program - Soil Samples:</u> Upon receipt in the laboratory the disturbed soil samples retrieved from the boreholes were tested for Grain Size Distribution and the results are given on Figures 8-9. Results indicate the sands are generally fine grained with less percentage of silt

3. RECOMMENDATIONS

- **3.1.1** Considering the thickness of the loose sand layers at shallow depths the proposed structure needs to be constructed on piles. The use of driven piles (steel/concrete) would appear to be a suitable pile type for the proposed construction.
- **3.1.2** <u>Pile Load Capacity:</u> Piling contractors should make their own assessment of piling conditions and load carrying capacities of proprietary pile types, based on the information contained within this report. Yet, as a guide, it is estimated that a 350 millimetre square precast concrete driven pile approximately 10.0m metres into the medium dense to dense sand (i.e. 10m below existing seabed level) will safely support a load up to 500kN, whereas a 350mm diameter steel pile driven to the same layer will be able to carry a load up to 400kN. These calculations are based on the sand profile encountered in borehole 6 (assuming the worst case loose / medium dense sand approx. from 9.0-10.0m). However, in the remaining boreholes a denser sand layer was encountered at this depth.</u>
- **3.1.3** <u>Pile Settlements:</u> Pile settlements for a 350 millimetre diameter steel or square concrete pile are estimated to be less than 10 millimetres, with differential settlements between adjacent piles being slightly less than half of the total estimated pile settlement.
- **3.1.4** <u>Lateral Pile Loads</u>: The ultimate lateral resistance H_u of free-head piles in cohesionless soils is conservatively given by the lesser of Equations 1 and 2.

 $H_{u} = \frac{\gamma dL^{3} tan^{2} (\frac{1}{4}\pi + \frac{1}{2}\phi)}{2(e + L)}$ Equation (1)

And the value of H_u which is the solution to the following equation:

H_u { e +0.54
$$\sqrt{\left[\frac{H_u}{d\gamma \tan^2(45 + \frac{1}{2}\phi)}\right]}$$
 } = M_yEquation (2)

Where

e = Eccentricity of applied load above the medium dense to dense sand M_v = Yield moment of pile section

- d = Pile diameter
- L = Embedded length of pile
- ϕ = Angle of internal friction of the sand
- γ = Bulk unit weight of Sand

Note: Lateral Pile capacity above 2.0m should be neglected

The following soil parameters should be adopted for a layered analysis:

0.0 - 2.0 metres (loose sand)	-	$Q_u =$	25°	(Neglect)
2.0-9.0 metres (dense sand)	-	$\mathcal{O}_{u} =$	38 ⁰	
9.0-10.0 metres (medium dense to dense sand)	-	$Ø_{\rm u} = 34^{\rm 0}$		

Lateral deflections of the pile footings can be calculated using the following estimated parameters, which are based on correlations and experience:

0.0 - 2.0 metres (loose sand)	- Elastic Modulus = 10 MPa
2.0-9.0 metres (dense sand)	- Elastic Modulus = 70 MPa
9.0-10.0 metres (medium dense to dense sand)	- Elastic Modulus = 50 MPa

- 3.1.5 <u>Pile Testing</u>: The use of a Pile Driver Analyser (PDA) or equivalent on a number of piles driven at the commencement of the piling contract will need to be used to establish driving and set criteria for subsequent piles. The testing of the piles shall be in accordance with Section 8 of Australian Standard 2159 1995, "Piling Design and Installation."
- **3.1.6** <u>**Pile Driving Conditions:**</u> The presence of quartz gravels within the proposed pile driving depths is anticipated to lead to difficult pile driving conditions steel tube or concrete piles.
- **3.1.7** <u>Earthquake Loading:</u> In accordance with Australian Standard 1170.4-2007, Part 4, "Earthquake Actions in Australia", site sub- soil class of $-C_e$ -Shallow soil site and Hazard Factor (Z) of 0.08 should be adopted for the design of the proposed structure at the subject site.
- **3.1.8** <u>General:</u> Conditions may change with the seasons. In particular, the soils underlying the subject site at shallow depths may become saturated and unworkable following prolonged periods of rainfall, particularly during the winter and spring months.

The above recommendations are based on the bore and test results, together with experience of similar conditions and are expected to be typical of the area or areas being considered. Nevertheless, all excavations should be examined carefully and any unusual feature reported to us in order to determine whether any changes might be advisable.

Under no circumstance shall this report be reproduced unless in full.

T.J. HOLT MIEAust CPEng EC-1022 A.S. JAMES PTY LTD

X:\SH\Other\QuaternarySands\GI 113173 Long Jetty- Welshpool\GP 113173 - Long Jetty, PORT WELSHPOOL STR.doc

PORT WELSHPOOL, VIC

DATE: June, 2011

PLAN OF APPROXIMATE BOREHOLE LOCATIONS (N.T.S.)	Tested:	Figure
	Drawn: A. Johnson	1

A	S.JAMES PTY. LTD.	Location:	Lon	ng Jetty	В	orehole: 1
G	eotechnical Engineers	Job No	PO 1131	RT WE 73	LSHPOOL	Date: 30/05/11
		Ground Wa	ater:	Tidal		Date: 00/00/11
Soil Type	Description	Depth		Tests	Results	
SAND	Grey, moist to wet SM/SP	0.00			Deck Level Just above G	round level
	Silty, with seashells Loose		·····			
			· · · · · · ·			
			·····			
			·····	+	N = - / - / 1	
		2.00	·····		N = 1 (No sample recovery)	
			· · · · · ·			
SAND	Grev moist to wet SM/SP			+	N = 18 / 12 / 17 N = 29	
	Silty, with sea shells and 5mm quartz gravel					
				+	N = 26 / 14 for 60mm bou	incing
			·····			
			· · · · · · · · · · · · · · · · · · ·	+	N = 26 bouncing	
			·····			
			·····			
			·····			
			·····	+	N = 20 / 12 / 8 for 50mm (No sample recovery)	
			· · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
		•	· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·	+	N = 8 / 12 / 14	
		•			N = 26	
+ Stander	END OF BOREHOLE	10.00	t Cabo	lion	1 invite invite	
+ Standar	bed Sample - Diameter Stated	Ø Friction	i cones Angle	510[1	P.L. Plastic Limit	Figure
s Vane S	near Strength	P Wet Der	nsity		P.I. Plasticity Index	2
p Pocket	Penetrometer Resistance	w Moisture	e Conte	nt	L.S. Linear Shrinkage	

A	S.JAMES PTY. LTD.	Location:	Lon	ng Jetty	В	orehole: 2
G	eotechnical Engineers	Joh No	PO	RT WE	LSHPOOL	Data: 20/05/11
		Ground W	ater:	Tidal		Date: 30/05/11
Soil Type	Description	Depth				
SAND	Grey, moist to wet SM/SP	0.00			Note:	4
	Loose tending dense					-
		2.00		+	N = 4 / 2 for 300mm	
		· · · · · · · · · · · · · · · · · · ·		+	N = 9 / 21 / 10 for 60mm	
SAND	Grey, moist to wet SM/SP Silty, with sea shells and 5mm quartz gravel Dense			÷	N = 8 / 15 / 20 N = 35	
				+	N = 9 / 13 / 27 N = 40	
				+	N = 19 / 30 for 140mm b	ouncing
	END OF BOREHOLE			+	N = 10 / 17 / 27 N = 44	
+ Standard	d Penetration Test - N blows/150mm. incr.	c Apparent	Cohes	sion	L.L. Liquid Limit	
I Undistur	bed Sample - Diameter Stated	Ø Friction	Angle		P.L. Plastic Limit	Figure
s Vane Sł p Pocket	near Strength Penetrometer Resistance	P Wet Der w Moisture	sity Conte	nt	P.I. Plasticity Index L.S. Linear Shrinkage	3

A	A.S.JAMES PTY. LTD.	Location:	Lon	ig Jetty		Borehole	: 3
G	eotechnical Engineers	Job No	PO	RT WE 73	LSHPOOL	Dato:	30/05/11
		Ground W	ater:	Tidal		Date.	30/03/11
Soil Type	Description	Depth		Tests	Results		
SAND	Grey, moist to wet SM/SP Silty, with seashells Loose	0.00	· · · · · ·		Note: Jetty 3.0m above Seabe	ed	
		· · · · · · · · · · · · · · · · · · ·					
		· 	 	+	N = 10 / 13 / 12 N = 25		
SAND	SM/SP Silty, with sea shells and 5mm quartz gravel Medium dense to dense			+	(No sample recovery) N = 9 / 17 / 18 N = 35		
		······································		÷	N = 40 for 80mm bounc	ing	
				÷	N = 20 / 14 / 11 N = 25 (No sample recovery)		
	END OF BOREHOLE	· · · · · · · · · · · · · ·		+	N = 7 / 30 bouncing		
+ Standar	d Penetration Test - N blows/150mm. incr. rbed Sample - Diameter Stated	c Apparen Ø Friction	t Cohes Angle	sion	L.L. Liquid Limit P.L. Plastic Limit	F	igure
s Vane Si p Pocket	hear Strength Penetrometer Resistance	P Wet Der w Moisture	nsity Conte	nt	P.I. Plasticity Index	e	4

A	S.JAMES PTY. LTD.		Location:	Lon	g Jetty	E	Borehole:	4
G	eotechnical Engineers		Job No	PO	RT WE	LSHPOOL	Data	20/05/11
			Ground W	ater:	Tidal		Date:	30/05/11
Soil Type	Description		Depth		Tests	Results		
SAND	Grey, moist to wet Silty with sea shells Loose	SM/SP	0.00			Note: Jetty 4.8m above Seabe	d	
			2.00					
SAND	Grey, moist to wet Silty, with sea shells and 5mm quartz gravel Medium dense to dense	SM/SP	· · · · · · · · · · · · · · · · · · ·		+	N = 10 / 13 / 17 N = 30		
			· · · · · · · · · · · · · · · · · · ·					
			· · · ·		+	N = 6 / 6 / 13 N = 19		
					+	N = 13 / 13 / 16 N = 29		
			· · · · · · · · · · · · · · · · · · ·		+	N = 14 / 23 / 20 For 100	mm bouncin	ığ
	END OF BOREHOLE				+	N = 6 / 10 / 22 N = 32	T	
+ Standar	d Penetration Test - N blows/150mm. incr.		c Apparent	Cohes	sion	L.L. Liquid Limit	_	laure
I Undistur	bed Sample - Diameter Stated		Ø Friction	Angle		P.L. Plastic Limit	F	igure 5
p Pocket	Penetrometer Resistance		w Moisture	Conte	nt	L.S. Linear Shrinkage		•

A	S.JAMES PTY. LTD.	Location:	Lon	ig Jetty		Borehole: 5
Ge	eotechnical Engineers	Job No.	PO 1131	RT WE 73	LSHPOOL	Date: 30/05/11
		Ground W	ater:	Tidal		Bater corcorri
Soil Type	Description	Depth		Tests	Results	
SAND	Grey, moist to wet SM/SP	0.00			Note:	ad .
	Loose					
		· 2.00				
		· ·	· · · · · · · · · · · · · · · · · · ·			
				+	N = 5 / 5 / 6 N = 11	
		· · ·				
		· · ·	· · · · · · · · · · · · · · · · · · ·	+	N = 13 / 24 bouncing	
SAND	Grey, moist to wet SM/SP Silty, with sea shells and 5mm quartz gravel Medium dense to dense					
				+	N = 10 / 13 / 26 N = 39	
		· · · · · · · · · · · · · · · · · · ·				
		· · ·	· · · · · · · · · · · · · · · · · · ·	+	N = 12 / 12 / 24 N = 36	
		· · ·				
	END OF BOREHOLE			+	N = 8 / 8 / 15 N = 23	
+ Standard	Penetration Test - N blows/150mm. incr.	c Apparen	t Cohes	sion	L.L. Liquid Limit	
I Undistur	bed Sample - Diameter Stated	Ø Friction	Angle		P.L. Plastic Limit	Figure
s Vane Sł	near Strength	P Wet Der	nsity		P.I. Plasticity Index	6
p Pocket	Penetrometer Resistance	w Moisture	e Conte	nt	L.S. Linear Shrinkag	e

A	A.S.JAMES PTY. LTD.		Location:	Lon	g Jetty		Borehole	: 6
G	eotechnical Engineers			PO	RT WE	LSHPOOL	Deter	00/05/44
			Ground W	1131 /ater:	73 Tidal		Date:	30/05/11
Soil Type	Description		Depth	ater.	Tests	Results		
SAND	Grey, moist to wet	SM/SP	0.00			Note:		
	Silty with sea shells Loose		•			Jetty 10.0m above Se	abed	
				· · · · · ·				
				· · · · · ·				
			•	·····				
				·····	+	N = 6 / 10 / 13 N = 23		
SAND	Grey, moist to wet	SM/SP		· · · · · ·				
	Silty, with sea shells and 5mm quartz gravel Medium dense to dense			·····				
			· ·	·····	+	N = 10 / 21 / 9 for 70n	nm	
			•	·····				
			· ·	·····	+	N = 9 / 11 / 16		
				· · · · · ·		N = 27		
			•	·····				
			· · ·	·····				
				· · · · · ·	+	N = 13 / 15 / 20 N = 35		
			· ·					
SAND	Grey, moist to wet	SM/SP	9.00		+	N = 4 / 3 / 4 N = 7		
	Silty, with 5mm quartz gravel Loose to medium dense		· .					
	END OF BOREHOLE		10.00					
+ Standar	d Penetration Test - N blows/150mm. incr.		c Apparent	Cohes	sion	L.L. Liquid Limit		
I Undistu	rbed Sample - Diameter Stated		Ø Friction	Angle		P.L. Plastic Limit	F	igure
s Vane S	hear Strength		P Wet Den	isity	- 4	P.I. Plasticity Inde	×	7
p Pocket	Penetrometer Resistance		I W Moisture	Conte	nt	I L.S. Linear Shrinka	ade	

	, A.S	JAL .	MES				JOB:	Long Je	ttv					JOB N	ō		113173	
	Geotec	thnical Er	gineers					Port We	Ishpool					REPOF	RT No:		L001	
	Clayton	Laborator	>											DATE:				
	16 Libbe	ett Av Clay	ton South													N	8-Jun-11	
	Gipsland	I Ports															~	
	FOR 97 Main	St																
	BAIRNS	DALE 3875																
Test	Lab Sample No		Locati	no	Depth	(m)			Sampl	e Desci	iption				Conditio	e e	Prepa	ration
1	45684		Bore Ho	ole 2	10.			S/	AND, Gr	anitic, G	rey Brow	u						
2	45685		Bore Ho	ole 4	9.5				SAND,	Trace Si	lt, Grey							
n	45686		Bore Ho	ole 5	7.5	-			SAND,	Trace Si	lt, Grey							
4	45687		Bore Ho	ole 6	3.0				SAND,	Trace Si	lt, Grey							
-	Grading of Sampl	es																
Aperture	Size mm		75.0	53.0	37.5	26.5	19.0	13.2	9.5	6.7	4.75	2.36	1.18	0.600	0.425	0.300	0.150	0.075
% passi	ng Sample No. 45	684	100	100	100	100	100	100	100	100	100	98	84	73	66	62	11	3
% passi	ng Sample No. 45	685	100	100	100	100	100	100	100	100	100	100	100	100	100	100	92	8
% passi	ng Sample No. 45	686	100	100	100	100	100	100	100	100	100	100	100	100	100	100	89	ω
% passi	ng Sample No. 45	687	100	100	100	100	100	66	98	96	95	92	91	89	88	88	60	11
	Plastic Index of S	amples																
L	Test Lab	Sample	No	Liauid	Limit	Plastic	Limit	Line	r Shrin	kade	Shi	rinkage	Behavic	ur	Plas	sticity In	dex	
	-																	
	2			3						-								
	3																	
	4				_													
	This doc with NAT Accredite Accredite	ument is is: FA's accred ed for comp ation No. 90	sued in acc itation requ bliance with	cordance uirements I ISO/IEC	17025						Approve	d Signat	ory		0)	N.º	a de la companya de l	
Notes:	Testing Carried Out (On Samp	les As S	upplied.								B.Mcfa	Irlane		In-11	\sum		
REPORT C	DF TEST RESULTS ON SC	OILS - SIEV	/E ANALY	SIS & PLA	STIC LIMI	LS					Tested	I By :		McFarlane			Figure 2	
AS PER AS	31289 .1.1, 2.1.1,3.6.1,																0	
A.S.JAMES	5 FORM No: LR007A (Fig	1) / REV 10	1 10/5/06								Reporte	ed By :	B	McFarlane			1 of 2	

