Beveridge Williams development & environment consultants

B

Stormwater Management Strategy

Dec 2018

DOCUMENT CONTROL DATA

BW	Beveridge Williams Melbourne Office	Title	Stormwater Management Strategy – 32 Grundy Ave, Nyora
	1 Glenferrie Road	Author	Lola Nurhalim
	Malvern Vic 3144	Checked	Aram Manjikian
	PO Box 61	Project	Andrea Boully
	Malvern Vic 3144	Manager	
	Tel: (03) 9524 8888 Fax: (03) 9524 8899 www.beveridgewilliams.com.au	Synopsis	Stormwater discharge strategy for the proposed residential development located at 32 Grundy Ave, Nyora

Reference: 1601444

Client: Wayne Allen

Revision Table

Rev	Description	Date	Authorised
А	Initial Submission	06/12/2018	AB
В	Updated Survey Plan	20/12/2018	AB

Distribution Table

Date	Revision	Distribution
06/12/2018	А	Council, Beveridge Williams, Client, Drainage Authority
20/12/2018	В	Council, Beveridge Williams, Client, Drainage Authority

Copyright Notice

© Copyright – Beveridge Williams & Co P/L

Users of this document are reminded that it is subject to copyright. This document should not be reproduced, except in full and with the permission of Beveridge Williams & Co Pty Ltd

CONTENTS

1	INTRO	DUCTION	.3
	1.1	SITE OVERVIEW	.3
2	EXISTI	NG CONDITIONS	.4
	2.1	TOPOGRAPHY	.4
	2.2	SURFACE WATER AND DRAINAGE	.5
3	DESIG	N INTENT	.6
	3.1	PROPOSED DEVELOPMENT	.6
	3.2	PROPOSED STORMWATER MANAGEMENT STRATEGY	.7
4	STORM	/WATER QUANTITY MANAGEMENT	.8
	4.1	HYDROLOGY	.8
	4.2	SUB-SURFACE DRAINAGE (1 IN 5-YEAR AEP)	.9
	4.3	SUBJECT SITE OVERLAND FLOW	.9
5	STORM	/WATER QUALITY TREATMENT	11
6	CONC	USION	14
7	REFER	ENCE	15

APPENDICES

APPENDIX A TOPOGRAPHY PLAN APPENDIX B INDICATIVE SUBDIVISION PLAN APPENDIX C RATIONAL METHOD CALCULATIONS APPENDIX D PC CONVEY RESULTS

Glossary of terms

Alphabetical list of terms and abbreviations used in report

AHD	Australian Height Datum A common national surface level datum approximately corresponding to mean sea level.
AEP	Annual Exceedance Probability. Probability of a flood event occurring in any year.
Authorities	Organisations responsible for supply and management of sewer, water, gas, electricity and telecommunications, roads and transport
BPEMG	Best Practice Environmental Management Guidelines
CMA	South Gippsland Catchment Management Authority
Client	Wayne Allen
Council	South Gippsland Shire Council
IDM	Infrastructure Design Manual
NTWL	Normal Top Water Level
Q₅	Storm water flow generated from 5-year AEP storm event.
Q ₁₀	Storm water flow generated from 10-year AEP storm event.
Q ₁₀₀	Storm water flow generated from 100-year AEP storm event.
Q_{gap}	Flow difference between Q_5 and Q_{100} storm event.
RB	Retardation Basin
SEPP	State Environment Protection Policy
WSUD	Water Sensitive Urban Design

1 INTRODUCTION

Beveridge Williams have been commissioned by Wayne Allen to prepare a preliminary Stormwater Management Strategy (SWMS) for a proposed residential development site located at 32 Grundy Ave, Nyora. The total site area is approximately 1.643 ha and it is proposed to develop the land into 14 residential lots.

This SWMS report is intended to provide sufficient evidence that drainage strategy from the proposed development site can meet Stormwater Best Practice Environmental Management Guidelines (BPEMG) and to the satisfaction of South Gippsland Shire Council and other relevant authorities.

1.1 Site Overview

The subject site is located approximately 100km South East of Melbourne and is currently occupied by rural properties. The site is irregular in shape with a total area of 1.64 hectares and fronts Grundy Avenue to the east (see Figure 1). The site is bounded by low density residential area to the north and south and by vacant land to the west.

Figure 1: Location Plan (Aerial) (Source: Near Map - Not to Scale)

2 EXISTING CONDITIONS

2.1 Topography

There is a row of plants/trees on the eastern boundary of the site, parallel to Grundy Ave and a cluster of plants/trees around the centre area. The topography is undulating, and majority of the slope falls from the west to north east direction. The remaining of the slope falls from east to north/north west and south direction. The site is moderately steep, with an approximate 1 in 20 grade that is relatively constant throughout the whole site.

The high point (RL 142m) is located on the centre of the site and the low point (RL 136m) is located on the north east corner. The survey conducted by SK Spatial Land Surveying Consultants is shown in Figure 2 below (and Appendix A).

Figure 2: Site Topography Plan (Not to Scale) (Source: SK Spatial Land Surveying Consultants)

2.2 Surface Water and Drainage

As previously mentioned, the site slope generally falls from west to north east direction. Surface water flows from the high point on the centre of the site to mainly north east direction. The remaining flows drain to north/north west and south directions (Refer to Figure 3 below).

Figure 3: Site Flow Analysis Plan (Not to Scale) (Source: SK Spatial Land Surveying Consultants)

3 DESIGN INTENT

3.1 Proposed Development

The proposal of the subdivision site intends to form 14 residential lots with an average lot size of 923m². The site includes road (0.257 ha) as well as open space area (0.094 ha) (Refer to Figure 4 below and Appendix B).

Figure 4: Indicative Subdivision Plan (Not to Scale)

Details of the indicative subdivision development plan are shown in Table 1 below.

Table 1: Details of Indicative Subdivision Plan of 32 Grundy Avenue, Ny	ora
---	-----

Details	Area
Standard Density Lots (19 Lots)	1.292 ha
Road	0.257 ha
Passive open Space	0.094 ha
Tota	al Area 1.643 ha

3.2 Proposed Stormwater Management Strategy

This SWMS has been proposed to follow the existing natural features of the pre-developed site.

For stormwater quantity management, it is proposed to provide two separate detention storage systems to cater for the flow from the development site. The strategy is to provide stormwater detention storage to detain the Q₁₀ post development site flow to pre-development level. This is in accordance with Council's confirmation for the neighbouring site and previously outlined in the Stormwater Management Strategy Report for 18 A Davis Street, Nyora, prepared by Beveridge Williams (July 2018).

Storage detention will be provided for both western part (0.611 ha) and eastern part (1.032 ha) of the site development (Refer to the Catchment Plan on Figure 5 below).

For stormwater quality management, it is proposed to provide proprietary devices within the road reserve to provide the stormwater treatment for the development site. The treatment system will also include mandated rainwater tanks in each individual lot.

Details of both the stormwater quantity and quality management are discussed in sections 4 and 5.

Figure 5: Catchment Plan (Not to Scale)

4 STORMWATER QUANTITY MANAGEMENT

As per section 3.2, stormwater runoff for the 1 in 10-year AEP event will need to be detained from the post development to pre-development condition. Details of stormwater quantity management are discussed in the following sections.

4.1 Hydrology

Pre and Post Development Flows Overall Site

The hydrological analysis of the 1 in 5, 10 and 100-year AEP flows for the proposed development site was undertaken using Rational Method to determine the pre-developed flow and design flows for the post developed scenarios.

The calculations for both catchment outlets (western and eastern sites) are included in Appendix C and the results are shown in Tables 2 and 3 below.

 Table 2: Rational Method Results for the 5-year, 10-year and 100-year AEP Peak Pre-and Post-Development

 Flows for Eastern Site

AEP Event	Pre-Development Flow	Post Development Flow without Detention
5 Year	0.033 m³/s	0.113 m³/s
10 Year	0.043 m³/s	0.140 m ³ /s
100 Year	0.097 m³/s	0.296 m ³ /s

Table 3: Rational Method Results for the 5-year, 10-year and 100-year AEP Peak Pre-and Post-Development Flows for Western Site

AEP Event	Pre-Development Flow	Post Development Flow without Detention
5 Year	0.021 m ³ /s	0.067 m³/s
10 Year	0.028 m³/s	0.083 m³/s
100 Year	0.063 m ³ /s	0.175 m³/s

Pre and Post Development Flows for Detention of Eastern and Western Area (1 in 10-year AEP)

The hydrological analysis of the 1 in 10-year AEP flows for the eastern and western area of the development site was undertaken using Rational Method to determine the pre-developed flow, design flows for the post developed scenarios and storage volume for detention. The results are shown on Tables 4 and 5 below.

Table 4: Rational Method Results for the 10-year AEP Peak Pre-and Post-Development Flows and Storage Volume (Eastern Site)

1 in 10 year AEP	Total Storage		
Pre-Development Flow	Post Development Flow without Detention	Post Development Flow with Detention	Volume Required for the Detention
0.043 m ³ /s	0.140 m ³ /s	0.043 m³/s	72 m ³

The above peak flows results indicate that the 1 in 10-year AEP post development peak flows can be detained to the pre-development level by providing detention storage of 72 m^3 .

 Table 5: Rational Method Results for the 10-year AEP Peak Pre-and Post-Development Flows and Storage Volume (Western Site)

1 in 10 year AEP	Total Storage		
Pre-Development Flow	Post Development Flow without Detention	Post Development Flow with Detention	Volume Required for the Detention
0.028 m ³ /s	0.083 m³/s	0.028 m³/s	40 m ³

The above peak flows results indicate that the 1 in 10-year AEP post development peak flows can be detained to the pre-development level by providing detention storage of 40 m³.

4.2 Sub-surface Drainage (1 in 5-year AEP)

The Legal Points of Discharge for the eastern site of the proposed development will be to the existing drainage pipe in Grundy Avenue on the external east of the site (subject to Council approval). The Legal Points of Discharge for the western site of the proposed development will be to the proposed residential development on the external west of neighbouring site.

The subsurface drainage network from the development site will convey all pipe flows to the main drainage pipe, via the proposed water quality treatment facilities (on the east site) and detention storages (on the east and west of the sites). The pipe network will be adequately sized to convey the 1 in 5-year AEP storm event flows through the proposed development drainage network.

4.3 Subject Site Overland Flow

Overland flow from the eastern part of the site will be directed via the road to an underground detention storage, which is sized to detain for the Q_{10} post development flow to pre-development level, prior to discharge on to Grundy Ave.

Overland flow from the western area will be directed via the road to an underground detention storage, which is sized to detain for the Q_{10} post development flow to pre-development level, prior to discharge on to Davis Street via overland flow paths on the external neighbouring site (Refer to the Overland Flow Path Plan in Figure 6).

The internal road for the development, will be designed to ensure that the Qgap overland flows through the site are within the safe hydraulic capacity of road floodway.

Underground Detention Storage

Stormwater detention for up to 1 in 10-year ARI will be provided for the both eastern and western parts of the site and the required storages are 72m³ and 40m³. It is proposed to provide underground storages within the road reserve to detain the 1 in 10-year AEP post development peak flows to the pre-development level. The details of the storages are provided in Table 6 below and indicative storage location is shown in Figure 6.

Details	Underground Detention (Eastern)	Underground Detention (Western)
Catchment Area	1.032 ha	0.611 ha
Box Culvert Size (mm)	900 (h) x 1800 (w)	900 (h) x 1800 (w)
Box Culvert Length	45 m	25 m
Storage Capacity	72 m ³	40 m ³
Outlet Control (mm)	135Ø Orifice	110Ø Orifice

 Table 6: Details of the Proposed Indicative Storage Detentions

Gap Flow (Eastern Area)

Gap flow, which is the difference between the 100-year ARI and 5-year ARI post development flows, was calculated right before the detention basins as this is the location where the highest flow would be occurring within the development. The calculations are included in Appendix C and the results are shown in Table 7 below.

Assessment Location	100-year AEP Flow	5-year AEP Flow	Gap Flow
Eastern Area	0.296 m³/s	0.113 m³/s	0.183 m³/s

Table 7: RORB Results for the Gap Flow (Eastern Area)

A PC Convey assessment of the road reserve shows that the Q_{gap} flow can be contained within floodway safety criteria. A typical cross section is shown in Figure 7 and the calculation result is included in Appendix D.

Figure 6: Indicative Overland Flow Path (Not to Scale)

5 STORMWATER QUALITY TREATMENT

It is a Victorian Government requirement that quality of stormwater runoff from the proposed development meets the Urban Stormwater Best Practice Environmental Management Guidelines (BPEMG), which are required under Clause 56 of the Victorian Planning Provisions (VPP). The targets are:

- 80% removal of Total Suspended Solids (TSS);
- 45% removal of Total Phosphorus (TP);
- 45% removal of Total Nitrogen (TN); and
- 70% removal of the Total Gross Pollutant Load (Litter).

Stormwater quality modelling was conducted using MUSIC (Model for Urban Stormwater Improvement Conceptualisation) for the proposed development site. The weather station used was obtained from the Narre Warren North weather station from the Melbourne Water rainfall template, as shown in light blue colour in Figure 8.

Figure 8: Greater Melbourne Rainfall Distribution (Source: Melbourne Water Music Guidelines – Not to Scale)

The layout of the MUSIC Model is shown in Figure 9 and results of the MUSIC model is shown in Table 8. The proposed stormwater treatment train will be a Stormceptor and a Hydrosystem units (or equivalent) located within the road reserve of the eastern site, and the provision of **rainwater tanks of 5,000 L for each lot** with daily demand water re-use of 500 L/day.

The stormwater treatment system will over treat the eastern sub catchment of 1.032 ha to allow the western sub catchment to be untreated.

Figure 9: MUSIC Model Layout

Site Treatment	% Removal	BPEMG Target % Removal
Total Suspended Solids (Kg/yr)	80.3	80
Total Phosphorus (Kg/yr)	56.9	45
Total Nitrogen (Kg/yr)	54.3	45
Gross Pollutants (Kg/yr)	86.4	70

Table 8: MUSIC Model Results

As shown in Table 8 above, the results show that the best practice BPEMG target is achieved for all the pollutant types with the proposed treatment assets.

Indicative stormceptor and hydrosystem units' location is shown on Figure 10. Detailed design of the proposed stormwater treated will be submitted to South Gippsland Shire Council during the detail design phase.

Figure 10: Concept Drainage Strategy Layout Plan

6 CONCLUSION

This report has identified an overall stormwater management strategy for the proposed residential development located at 32 Grundy Avenue, Nyora. This strategy is preliminary only and be subject to further changes.

The strategy provides a methodology for the management of stormwater on the subject site which includes:

- Volume of stormwater detention requirement of 72 m³ and 40 m³ for the eastern and western parts of the development site to detain 1 in 10-year peak post development flow to pre-development level. These volumes will be catered by detention storage box culverts located under the main road reserves on both eastern and western sites.
- Stormwater quality treatment system requirement to meet BPMEG standard will be a Stormceptor and a Hydrosystem units (or equivalent) located in the road reserve of the eastern site and rainwater tanks within residential lots.

The above strategy can be implemented to satisfy South Gippsland CMA and Council's development requirements with no net effect on the downstream properties.

7 **REFERENCE**

18A Davis Street, Nyora: Stormwater Management Strategy, Beveridge Williams (July 2018)

BEVERIDGE WILLIAMS & CO PTY LTD

Prepared by

Reviewed by

Lola Nurhalim Senior Water Resources Engineer Aram Manjikian Manager Water Resources

Approved by

Andrea Boully Project Manager

This is not a Title Survey
Only visable services are shown on this plan.
Data on this plan may only be manipulated with permission from SK Spatial Pty Ltd.

Sheet 1 of 1.

Site Context Plan

[Notations Levels are to the Australian Height Datum (AHD)	Mr. 32 Grund	Wayne A	VIIEN Dra, 3987	Parish of Lang Lang East Crown Allotment 10, 28 & 29
3	3 0 3 6 9 12	Re-establishment datum vide PS715873B	Sout	h Gippsland Sh	nire	Lat 6 on PS715873
		Contour interval: 0.25m	Plan No.	Scale	Drawn	
	engths are in metres	Total site area: 1.643ha	16570 SC-2	1:600 - A3	01/08/2016	Paracentroid (MGA94): E 384 190, N 5755 880

Combined Development Plan

18A Davis Street & 32 Grundy Avenue, Nyora

Kufner Textiles (Australia) P/L & Wayne Allen

Melbourne ph : 03 9524 8888 www.beveridgewilliams<u>.com.au</u>

16.10.17	Initial issue	СК	LN
01.03.18	Plan amended	TG	AB
Date	Description	Drafted	Approve

		Area	% of site		
Site (Approx.)	5.899ha				
* Standard Density Lots (59 Lots)	4.34	2ha			
* Roads		0.88	9ha		
* Superlot A		0.391ha			
Unencumbered Passive Open Space		0.278ha 4.7%			
Net Developable Area		5.622ha			
Lot Yield (Excludes superlot)	5 7	9 Lots @ 11. 36m² average	3 lots per ha e lot size		

* Indicates inclusion in NDA

15	0	15	30	45	60	75	90m
					Date: Versid Job N	12.11.18 on No:)3 Io: 16014	
escription			Drafte	d Approv	ed Scal	e (A1): (A3):	1:750 1:1500

C:\USERS\GUYT\DOCUMENTS\1601444-18A DAVIS STREET NYORA_LAN\00\CAD\1601444_UD_BASE01.DWG

Pre-Developed Flow Calculations

1.032 RURAL1

Client:	Kufner Textiles (Australia) P/L	Date:	21/11/2018
Project:	32 Grundy Avenue, Nyora (Eastern Site)		
Subject:	PRE-DEVELOPMENT FLOW CALCULATIONS		
Job No:	1601444	Ву:	MA

Location :		Ny	ora]								Coefficients			
ARI Year :		10	00]					a 3.72392	b -0.64046	c 0.00137	d 0.00588	е -0.00194	f 0.00024	g -0.00003
INPUT	1		2	3	4A					5A			6		
Catchment	Area	Catchment	Catchment Type	Calculated Tc	Manual Input Tc	Selected Tc	Selected f _p	Weighted f _p	Calculated C	Manual Input C	Selected C	Ae	Σ Ae	I 100	Q 100
	ha	Category	(For Fp)	mins	mins	mins			100		100	ha	ha	mm/hr	m³/s
Site Catchment	1.032	RURAL1	Rural - Environmental	8.02		8.02	0.1		0.245		0.245	0.25	0.253	138.23	0.097

0.000

Tc Calculated using : $t_c = 0.76 \times A^{0.38} \label{eq:tc}$

TOTAL

Weighted Frac Imperv using :

8.02

$$f = \sum \left(f_{area \ 1} \times \frac{A_{area \ 1}}{A_{total}} \right) + \left(f_{area \ 2} \times \frac{A_{area \ 2}}{A_{total}} \right)$$

8.02

0.000
$C_{10} = 0.1 + 0.013 \Re ({}^{10}I_1 - 25)$
$C_{\!10} \!=\! 0.9 \!\times\! f \!+\! C_{\!10} \!\times\! \left(\!1\!-\!f\right)$

Equation 14.11 and 14.12 AR&R

0.143

Q Calculated using :

138.23

0.253

 $Q = \frac{A_e \times i}{360}$

0.097

Rational Method

Equation 5.4 AR&R

									Client:	Kufner Textiles (Australia)	P/L						Date:	21/1:	1/2018
B		Post-Deve	loped Flow	Calculations					Project:	32 Grundy Avenue, Nyora	(Eastern Site)								
									Subject:	POST-DEVELOPMENT FLO	W CALCULATIONS								
									Job No:	1601444							By:	l	LN
Location :			Nyora	а											Coeffici	ents			
					_							ARI							
ARI Year :			100									100	3.72392	-0.6404646	0.001367	0.005876	-0.001942	0.000241	-2.595E-05
INDUT	1	2	2	4				40		E				50			6		
INFOT	1	2	3	-				70		5				JA			0		
	Area	Longth (I)	flong (f)			+10.4	Calculated	Manual Input	Selected			Mainhand	Calculated	Manual Input	Selected	4.0	540	I	Q
Catchment	Area	Length (L)	Slope (S)	Surface	n (n*)	10.4	Тс	Тс	Тс	(For Fp)	Selected f _p	weighted	с	c	С	Ae	ZAe	100	100
	ha	m	m/m				mins	mins	mins	(гог гр)		'p	100		100	ha	ha	mm/hr	m³/s
S3	0.41	135.00	0.037	Range	0.013	26.15	7.00		7.00	Resi Medium Density	0.6		0.701		0.701	0.29	0.287	147.38	0.117
S4	0.13	82.00	0.061	Range	0.013	16.69	7.00		7.00	Road Zone Cat 2	0.6		0.701		0.701	0.09	0.092	147.38	0.037
S5	0.49	183.00	0.027	Range	0.013	34.50	7.00		7.00	Resi Medium Density	0.6		0.701		0.701	0.34	0.344	147.38	0.141
TOTAL	1.031								7.000			0					0.722	147.377	0.296
To Calculated using :		-0.83		C10	Calculated	ucing :				O Calculated using a		Woightod	Fraction Imp						
(-	*)0.6				Calculated	using .)			Q Calculated using .		weighteu		ervious using.					
$t = 6.94 * \frac{(L \times L)}{L}$	<i>n</i>)			$C_{10} =$	0.1 + 0.0	138(10)	I ₁ -25			$O = A_e \times i$		£ _ 5		A area 1			$A_{area 2}$		
$I^{0.4}$	$\times S^{0.30}$			$C_0 =$	$0.9 \times f$	$+C_{10\times}$	(1-f)			$Q = \frac{360}{360}$		J = Z	J area	A_{total}	-) +(<i>)</i> .	area 2 × -	A total		
				-10			(-))								<i>´</i> ``		101111 /		
Directions:												<u>Go to F</u>	raction Impe	rvious rable					
1		Enter longe	est length of	Catchment						4	Enter Area of Catchment	(Ha)							

Enter longest length of Catchment Enter average slope of Catchment (Metre/Metre) Choose surface type of catchment from drop down list (See n value table)

2

3

- Enter Area of Catchment (Ha) 4
- Choose Catchment category to determine fraction impervious Sum effective areas of catchments to determine Q 5
- 6

Pre-Developed Flow Calculations

1.032 RURAL1

Client:	Kufner Textiles (Australia) P/L	Date:	21/11/2018
Project:	32 Grundy Avenue, Nyora (Eastern Site)		
Subject:	PRE-DEVELOPMENT FLOW CALCULATIONS		
Job No:	1601444	Ву:	MA

Location :		Nye	ora									Coefficients			
ARI Year :		1	0]					a 3.24768	b -0.61613	с -0.00907	d 0.00724	e -0.00138	f -0.00004	g 0.00000
INPUT	1		2	3	4A					5A			6		
Catchment	Area	Catchment	Catchment Type	Calculated Tc	Manual Input Tc	Selected Tc	Selected f _p	Weighted f _p	Calculated C	Manual Input C	Selected C	Ae	Σ Ae	I 10	Q 10
Catchment	Area ha	Catchment Category	Catchment Type (For Fp)	Calculated Tc mins	Manual Input Tc mins	Selected Tc mins	Selected f_p	Weighted f _p	Calculated C 10	Manual Input C	Selected C 10	Ae ha	Σ Ae ha	l 10 mm/hr	Q 10 m ³ /s
Catchment Site Catchment	Area ha 1.032	Catchment Category RURAL1	Catchment Type (For Fp) Rural - Environmental	Calculated Tc mins 8.02	Manual Input Tc mins	Selected Tc mins 8.02	Selected f _p	Weighted f _p	Calculated C 10 0.189	Manual Input C	Selected C 10 0.189	Ae ha 0.19	Σ Ae ha 0.195	I 10 mm/hr 79.10	Q 10 m ³ /s 0.043

0.000

Tc Calculated using : $t_c = 0.76 \times A^{0.38} \label{eq:tc}$

TOTAL

Weighted Frac Imperv using :

8.02

$$f = \sum \left(f_{area \ 1} \times \frac{A_{area \ 1}}{A_{total}} \right) + \left(f_{area \ 2} \times \frac{A_{area \ 2}}{A_{total}} \right)$$

8.02

0.000
$C_{10} = 0.1 + 0.013 \Re ({}^{10}I_1 - 25)$
$C_{10} = 0.9 \times f + C_{10} \times (1 - f)$

Equation 14.11 and 14.12 AR&R

0.110

Q Calculated using :

0.043

79.10

0.195

 $Q = \frac{A_e \times i}{360}$

Rational Method

Equation 5.4 AR&R

										Client:	Kufner Textiles (Australia)	P/L						Date:	21/11	1/2018
Б			Post-Deve	loped Flow	Calculations					Project:	32 Grundy Avenue, Nyora	(Eastern Site)								
										Subject:	POST-DEVELOPMENT FLOW CALCULATIONS									
	_									Job No:	1601444							By:	L	N
Location : Nyora											Coeffic	ients								
ARI Year :				10]							ARI 10	a 3.247683	ь -0.61612678	с -0.009066	d 0.007236	e -0.001382	f -3.77E-05	g 2.97E-06
IN	PUT	1	2	3	4				4A		5				5A			6		
Catc	hment	Area	ea Length (L) Slope (S) Surface	n (n*)	t10.4	Calculated Tc	Manual Input Tc	Selected Tc	Catchment Category	Selected f _p	Weighted f	Calculated C	Manual Input C	Selected C	Ae	$\Sigma \mathrm{Ae}$	l 10	Q 10		
		ha	m	m/m				mins	mins	mins	(гог гр)		'p	10		10	ha	ha	mm/hr	m³/s
9	S3	0.41	135.00	0.037	Range	0.013	26.15	7.00		7.00	Resi Medium Density	0.6		0.584		0.584	0.24	0.239	83.96	0.056
9	S4	0.13	82.00	0.061	Range	0.013	16.69	7.00		7.00	Road Zone Cat 2	0.6		0.584		0.584	0.08	0.076	83.96	0.018
9	\$5	0.49	183.00	0.027	Range	0.013	34.50	7.00		7.00	Resi Medium Density	0.6		0.584		0.584	0.29	0.287	83.96	0.067
TO	TAL	1.032								7.000			0					0.602	83.962	0.140
Tc Calculated using : $(L \times n^*)^{0.6}$ $C^{1} = 0 + 0.0133 \frac{(^{10}U - 2)^{10}}{(^{10}U - 2)^{10}}$						Q Calculated using : Weighted Fraction Impervious using:														
$t = 6.94 * \frac{1}{I^{0.4} \times S^{0.30}}$ $C_{10} = 0.9 \times f + C^{1}_{10} \times (1 - f)$ Directions:				$Q = \frac{e}{360} \qquad \qquad f = \sum_{i=1}^{e} \left(f_{area - 1} \times \frac{area - 1}{A_{total}} \right) + \left(f_{area - 2} \times \frac{area - 2}{A_{total}} \right)$																
	1		Enter longe	st length of	Catchment						4	Enter Area of Catchment	(Ha)							

b. Post-Developed Flow

Enter longest length of Catchment
Enter average slope of Catchment (Metre/Metre)
Choose surface type of catchment from drop down list (See n value table)

2 3

- Enter Area of Catchment (Ha) 4
- Choose Catchment category to determine fraction impervious Sum effective areas of catchments to determine Q 5
- 6

Detention Storage Calculator

SELECT LOCATION	Nyora							
PRE-DEVELOPMENT ARI	10	3.24768		-0.00907	0.00724	-0.00138	-0.00004	0.00000
POST-DEVELOPMENT ARI	10	3.24768		-0.00907	0.00724	-0.00138	-0.00004	0.00000

PRE-DEVELOPMENT												
Total Catchment Area	CA	Tc	I	Input Manual Restrictive Outflow	Calculated Restrictive Outflow							
	10											
ha	ha	mins	mm/hr	m³/s	m³/s							
1.0320	0.195	8.020	79.10	0.043	0.04							

Time Interval Start	7	(mins)
Storm Duration Time Interval (c)	2	(mins)
Pump / Outflow Outage Duration (to)	0	(mins)
Pump / Outflow Outage Duration (to)	0.00	(hrs)

Change only if required Default = Tc Vary Time interval until maximum storage volume is achieved See graph below Change only if required

Change only if required

Client:	Kufner Textiles (Australia) P/L	Date:	21/11/2018								
Project:	32 Grundy Avenue, Nyora (Eastern Site)										
Subject:	ATIONAL / POERTNER METHOD DETENTION REQUIREMENT CALCULATIONS										
Job No:	1601444	Ву:	LN								

	POST-DEVELOPMENT												
Total Catchment Area	СА	Тс	I	Q									
	10			10									
ha	ha	mins	mm/hr	m³/s									
1.032	0.602	7.000	83.962	0.140									

Formulas used

C Value

 $C_{10}^{1} = 0.1 + 0.0133 \times ({}^{10}I_{1} - 25)$ $C_{10} = 0.9 \times f + C_{10} \times (1 - f)$

TOTAL DETENTION STORAGE REQUIRED (m ³)	Rational /	Poertner Inflow H	ydrograph	Rational / Poertner Outflow Hydrograph				
	Qi	Time		Qo	Time			
	m ³ /s	mins		m³/s	mins			
72	0.000	0.0		0.000	0.0			
72	0.054	7.0	(tc)	0.043	42.5	(tx2)		
72	0.054	41.0	(ts)	0.000	48.0	(2tc+c)		
72	0.000	48.0		0.000	48.0			
	0.000	0.0						

TOTAL STORAGE REQUIRED										
Detain ARI of	1 in 10 Year Post to 1 in 10 Year Pre									
RATIONAL / POERTNER METHOD										
	m³									
	72									

Pre-Developed Flow Calculations

1.032 RURAL1

Client:	Kufner Textiles (Australia) P/L	Date:	21/11/2018
Project:	32 Grundy Avenue, Nyora		
Subject:	PRE-DEVELOPMENT FLOW CALCULATIONS		
Job No:	1601444	Ву:	MA

Location :		Ny	ora									Coefficients			
ARI Year :			5						a 3.11307	ь -0.60649	с -0.01285	d 0.00758	е -0.00122	f -0.00013	g 0.00001
INPUT	1		2	3	4A					5A			6		
Catchment	Area	Catchment	Catchment Type	Calculated Tc	Manual Input Tc	Selected Tc	Selected f _p	Weighted f _p	Calculated C	Manual Input C	Selected C	Ae	Σ Ae	I 5	Q 5
	ha	Category	(For Fp)	mins	mins	mins			5		5	ha	ha	mm/hr	m³/s
Site Catchment	1.032	RURAL1	Rural - Environmental	8.02		8.02	0.1		0.170		0.170	0.18	0.175	67.02	0.033

0.000

Tc Calculated using : $t_c = 0.76 \times A^{0.38}$

TOTAL

Weighted Frac Imperv using :

8.02

$$f = \sum \left(f_{area \ 1} \times \frac{A_{area \ 1}}{A_{total}} \right) + \left(f_{area \ 2} \times \frac{A_{area \ 2}}{A_{total}} \right)$$

8.02

0.000
$C_{10} = 0.1 + 0.013 \Re ({}^{10}I_1 - 25)$
$C_{\!10} \!=\! 0.9 \!\times\! f \!+\! C_{\!10} \!\times\! \left(\!1\!-\!f\right)$

Equation 14.11 and 14.12 AR&R

0.099

Q Calculated using :

0.033

67.02

0.175

 $Q = \frac{A_e \times i}{360}$

Rational Method

Equation 5.4 AR&R

									Client:	Kufner Textiles (Australia) P/L Date: 21/11/2018							1/2018		
M		Post-Deve	loped Flow	Calculations					Project:	32 Grundy Avenue, Nyora	1								
									Subject:	POST-DEVELOPMENT FLO	W CALCULATIONS								
									Job No:	1601444							By:		LN
Location :			Nyora	1											Coeffic	ients			
												ARI							
ARI Year :			5									5	3.11307	-0.60649079	-0.012849	0.007581	-0.001218	-0.00013	1.464E-05
INPUT	1	2	3	4				4A		5				5A			6		
Catchment	Area	Length (L)	Slope (S)	Surface	n (n*)	t10.4	Calculated Tc	Manual Input Tc	Selected Tc	Catchment Category	Selected f _p	Weighted f	Calculated C	Manual Input C	Selected C	Ae	ΣAe	I 5	Q 5
	ha	m	m/m				mins	mins	mins	(гог гр)		'p	5		5	ha	ha	mm/hr	m³/s
S3	0.41	135.00	0.037	Range	0.013	26.15	7.00		7.00	Resi Medium Density	0.6		0.555		0.555	0.23	0.227	71.02	0.045
S4	0.13	82.00	0.061	Range	0.013	16.69	7.00		7.00	Road Zone Cat 2	0.6		0.555		0.555	0.07	0.072	71.02	0.014
S5	0.49	183.00	0.027	Range	0.013	34.50	7.00		7.00	Resi Medium Density	0.6		0.555		0.555	0.27	0.272	71.02	0.054
TOTAL	1.031								7.000			0					0.572	71.024	0.113
Tc Calculated using : $t = 6.94 * \frac{(L \times R)}{I^{0.4} \times 10^{-10}}$	$\frac{n^*}{S^{0.30}}$	-0.83		$C_{10} = C_{10} = C$	Calculated $0.1+0.0$ $0.9 \times f$ +	using : 133(¹⁰ / - <i>C</i> ¹ 10×((1-25) (1-f)			Q Calculated using : $Q = \frac{A_e \times i}{360}$		Weighted f $f = \sum_{n=1}^{\infty}$	Fraction Imp $ \int \int dr f_{area} $	$\frac{1}{1} \times \frac{A_{area}}{A_{total}}$	-) + $(f$	area 2 X ·	$\frac{A_{area}}{A_{total}}$		
Directions:		Go to Fraction Impervious Table																	
1 2 3		Enter longe Enter avera Choose surf	st length of C ge slope of C face type of c	Catchment Catchment (Metre/ Catchment from dr	/Metre) rop down li	st (See n v	alue table)			4 5 6	Enter Area of Catchment Choose Catchment categ Sum effective areas of ca	t (Ha) gory to deterr atchments to	nine fractio determine (n impervious Q					

b. Post-Developed Flow

Enter average slope of Catchment (Metre/Metre)
Choose surface type of catchment from drop down list (See p value :

- 4 Enter Area of Catchment (Ha)
- Choose Catchment category to determine fraction impervious Sum effective areas of catchments to determine Q 5
- 6

Pre-Developed Flow Calculations

0.611 RURAL1

Client:	Kufner Textiles (Australia) P/L	Date:	21/11/2018
Project:	32 Grundy Avenue, Nyora		
Subject:	PRE-DEVELOPMENT FLOW CALCULATIONS		
Job No:	1601444	Ву:	MA

Location :		Ny	ora]								Coefficients					
ARI Year :		10	00]					a 3.72392	b -0.64046	c 0.00137	d 0.00588	e -0.00194	f 0.00024	g -0.00003		
INPUT	1		2	3	4A					5A			6				
Catchment	Area	Catchment	Catchment Type	Calculated Tc	Manual Input Tc	Selected Tc	Selected f _p	Weighted f _p	Calculated C	Manual Input C	Selected C	Ae	Σ Ae	I 100	Q 100		
	ha	Category	(For Fp)	mins	mins	mins			100		100	ha	ha	mm/hr	m³/s		
Site Catchment	0.611	RURAL1	Rural - Environmental	6.57		6.57	0.1		0.245		0.245	0.15	0.150	151.60	0.063		

0.000

Tc Calculated using : $t_c = 0.76 \times A^{0.38}$

TOTAL

Weighted Frac Imperv using :

6.57

$$f = \sum \left(f_{area \ 1} \times \frac{A_{area \ 1}}{A_{total}} \right) + \left(f_{area \ 2} \times \frac{A_{area \ 2}}{A_{total}} \right)$$

6.57

0.000
$C_{10} = 0.1 + 0.013 \Re ({}^{10}I_1 - 25)$
$C_{10} = 0.9 \times f + C_{10} \times (1 - f)$

Equation 14.11 and 14.12 AR&R

0.143

Q Calculated using :

151.60

0.150

 $Q = \frac{A_e \times i}{360}$

0.063

Rational Method

Equation 5.4 AR&R

									Client:	Kufner Textiles (Australia)	P/L						Date:	21/11	1/2018
D		Post-Deve	loped Flow	Calculations					Project:	32 Grundy Avenue, Nyora									
									Subject:	POST-DEVELOPMENT FLO	W CALCULATIONS								
									Job No:	1601444							By:	L	N
Location :			Nyora	3											Coeffici	ents			
					_							ARI							
ARI Year :			100									100	3.72392	-0.6404646	0.001367	0.005876	-0.001942	0.000241	-2.595E-05
INDUT	1	2	2	4				4.0		F				EA			c		
INPOT	1	2	5	4				44		5				SA			0		
					1		Calculated	Manual Input	Selected				Calculated	Manual Innut	Selected			I	0
Catchment	Area	Length (L)	Slope (S)	Surface	n (n*)	t10.4	Тс	Tc	Тс	Catchment Category	Selected f _p	Weighted	C	C	C	Ae	ΣAe	100	100
	ha	m	m/m				mins	mins	mins	(For Fp)		τ _p	100		100	ha	ha	mm/hr	m ³ /s
\$1	0.23	87.00	0.040	Range	0.013	19.63	7.00		7.00	Resi Medium Density	0.6		0.701		0.701	0.16	0.163	147.38	0.067
S2	0.38	144.00	0.024	Range	0.013	30.95	7.00		7.00	Resi Medium Density	0.6		0.701		0.701	0.26	0.265	147.38	0.108
TOTAL	0.611								7.000			0					0.428	147.377	0.175
To Coloulated using a		-1.25		C10	Coloulated					O Calaulated using a		Mainhead C							
/	*)0.6			010	calculated	using .	``			Q calculated using .		weighteur		ervious usirig.					
$t = 6.94 * \frac{(L \times L)}{L}$	n`)``			$C_{10} =$	0.1 + 0.0	133(10)	1-25			$O = A_e \times i$		f _ 5	- (r	A area 1			$A_{area 2}$		
$I^{0.4} \times I^{0.4}$	$< S^{0.30}$			$C_{10} =$	$0.9 \times f$ +	$+C_{10} \times ($	(1-f)			$Q = \frac{360}{360}$		J = Z	J area	1 × A total	-)+()	area 2 × -	A		
				-10		- 10- 1	(-))							ioiui			ioiui)		
Directions:												<u>Go to Fi</u>	raction Impe	rvious Table					
1		Enter longe	st length of C	Catchment						4	Enter Area of Catchment	: (Ha)							

2 3 Enter average slope of Catchment (Metre/Metre) Choose surface type of catchment from drop down list (See n value table)

- Choose Catchment category to determine fraction impervious Sum effective areas of catchments to determine Q 5 6

Pre-Developed Flow Calculations

0.611 RURAL1

Client:	Kufner Textiles (Australia) P/L	Date:	21/11/2018
Project:	32 Grundy Avenue, Nyora (Western Site)		
Subject:	PRE-DEVELOPMENT FLOW CALCULATIONS		
Job No:	1601444	Ву:	MA

Location :		Ny	ora									Coefficients			
ARI Year :		1	0						a 3.24768	b -0.61613	c -0.00907	d 0.00724	e -0.00138	f -0.00004	g 0.00000
INPUT	1		2	3	4A					5A			6		
Catchment	Area	Catchment	Catchment Type	Calculated Tc	Manual Input Tc	Selected Tc	Selected f _p	d f _p Weighted f _p C C C C	Selected C	Ae	Σ Ae	I 10	Q 10		
	ha	Category	(For Fp)	mins	mins	mins			10		10	ha	ha	mm/hr	m³/s
Site Catchment	0.611	RURAL1	Rural - Environmental	6.57		6.57	0.1		0.189		0.189	0.12	0.115	86.23	0.028

0.000

Tc Calculated using : $t_c = 0.76 \times A^{0.38} \label{eq:tc}$

TOTAL

Weighted Frac Imperv using :

6.57

$$f = \sum \left(f_{area \ 1} \times \frac{A_{area \ 1}}{A_{total}} \right) + \left(f_{area \ 2} \times \frac{A_{area \ 2}}{A_{total}} \right)$$

6.57

0.000
$C_{10}=0.1+0.013\Re({}^{10}I_{1}-25)$
$C_{10} = 0.9 \times f + C_{10} \times (1 - f)$
Equation 14.11 and 14.12 AR&R

0.110

Q Calculated using :

0.028

86.23

0.115

 $Q = \frac{A_e \times i}{360}$

Rational Method

Equation 5.4 AR&R

VerticePost-Developed Flow CalculationsImage: 2/11/2018Image: bit is the intermediate (Murralin) P(h)Image: 2/11/2018Image: bit is the intermediate (Murralin) P(h)Image: 2/11/2018Image: bit is the intermediate (Murralin) P(h)Image: 1/11/2018Image: bit is the intermediate (Murralin) P(h)Image: 1/11/20																					
Post-Developed Flow Calculations $ \frac{projett:}{12} \frac{2}{10} condy Avenue, Word Western Site) \\ \frac{projett:}{10} \frac{2}{10} condy Avenue, Word Western Site) \\ \frac{projett:}{10} \frac{12}{10} condy Avenue, Word Western Site) \\ \frac{projett:}{10} condy Avenue, Word Western$										[Client:	Kufner Textiles (Australia)	P/L						Date:	21/11	/2018
$\begin{aligned} \begin{array}{c c c c c c c c c c c c c c c c c c c $		M		Post-Deve	loped Flow	Calculations					Project:	32 Grundy Avenue, Nyora	(Western Site)								
$\frac{1}{100 \text{ Ne}} \frac{1}{100 $											Subject:	POST-DEVELOPMENT FLO	W CALCULATIONS								
Location:NyoraLocation:NyoraLocation:Loc											Job No:	1601444							By:	L	N
Location :VoraConfidentsARI Year :1010234A55A6Catchment $\frac{1}{10}$ and $\frac{1}$										_											
ARI Year:In <t< td=""><td></td><td>Location :</td><td></td><td></td><td>Nyora</td><td>а</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Coeffici</td><td>ents</td><td></td><td></td><td></td></t<>		Location :			Nyora	а											Coeffici	ents			
AR If Year:10103.24763-0.6512678-0.0009060.00723-0.001382-3.77E-052.97E-05INPUT12344A55A6 $\frac{10}{10}$ 3.24763 $\frac{3.024763}{10}$ -0.001382 $\frac{3.77E-05}{10}$ 2.97E-05 $\frac{10}{10}$ 2.97E-052.97E-052.97E-052.97E-05 $\frac{10}{10}$ $\frac{10}{10}$ $\frac{3.24763}{10}$ $\frac{0.001232}{10}$ $\frac{0.00132}{10}$ $\frac{3.77E-05}{10}$ $\frac{2.97E-05}{10}$ $\frac{10}{10}$ 10							_							ARI							
INPUT1234456 $\overline{achoment}$ \overline{hae} \overline{ment} $ment$		ARI Year :			10									10	3.247683	-0.61612678	-0.009066	0.007236	-0.001382	-3.77E-05	2.97E-06
$\frac{\text{Area}}{\text{ba}} \frac{\text{Area}}{\text{m}} \frac{\text{length}(l)}{\text{ba}} \frac{\text{Slope}(f)}{\text{m}} \frac{\text{surface}}{\text{m}} \frac{\text{n}(n^{*})}{\text{m}} \frac{\text{tu}0.4}{\text{m}} \frac{\text{Calculated}}{\text{m}} \frac{\text{Manual input}}{\text{m}} \frac{\text{Selected}}{\text{rc}} \frac{\text{Calculated}}{\text{(for Fp)}} \frac{\text{selected } f_{p}}{\text{f}} \frac{\text{Weighted}}{f_{p}} \frac{\text{Calculated}}{\text{C}} \frac{\text{Manual input}}{\text{c}} \frac{\text{Selected}}{\text{ba}} \frac{\text{A}}{\text{ha}} \frac{\text{A}}{\text{ha}} \frac{\text{A}}{\text{ha}} \frac{\text{A}}{\text{ha}} \frac{\text{A}}{\text{ha}} \frac{\text{A}}{\text{ha}} \frac{\text{A}}{\text{ha}} \frac{\text{A}}{\text{ha}} \frac{\text{A}}{\text{m}} \frac{\text{A}}{\text{m}$		INPUT	1	2	3	4				4A		5				5A			6		
$\frac{\operatorname{Area}}{\operatorname{ha}} = \frac{\operatorname{length}(l)}{\operatorname{ha}} = \frac{\operatorname{slope}(s)}{\operatorname{m}/\operatorname{m}/\operatorname{m}/\operatorname{m}/\operatorname{m}/\operatorname{m}/\operatorname{m}/m$	Г			1	,			1		I		T	T	1	1	1	-				
$\frac{1}{2} = 6.94 * \frac{(L \times n^*)^{0.6}}{I^{0.4} \times S^{0.30}}$ $\frac{1}{2} = \frac{1.25}{C_{10}} = C_{10} + C_{10$		Catabarant	Area	Length (L)	Slope (S)	Curtons		t10.4	Calculated	Manual Input	Selected	Catchment Category	Colocted f	Weighted	Calculated	Manual Input	Selected	Ae	Σ Ae	1	Q
$\frac{10}{2} + \frac{10}{10} + \frac{10}$		Catchment	ha		m/m	Surrace	n (n•)		minc	minc	minc	(For Fp)	Selected Ip	fp	10	Ľ	L 10	ha	ha	10 mm/hr	10
$\frac{1}{22} 0.125 0.100 0.024 \text{Range} 0.013 30.95 7.00 7.00 \text{Residedium Density} 0.6 0.584 0.22 0.221 83.96 0.051 0.0$	ł	\$1	0.23	87.00	0.040	Range	0.013	19.63	7.00	111115	7.00	Resi Medium Density	0.6		0.584		0 584	0.14	0.136	83.96	m /s
$\frac{1}{2} = \frac{1}{100} = \frac{1}{1$	ŀ	52	0.23	144.00	0.040	Range	0.013	30.95	7.00		7.00	Resi Medium Density	0.0		0.584		0.584	0.14	0.130	83.96	0.051
TOTAL 0.611 7.000 0 0.357 83.962 0.083 To Calculated using : -1.25 C10 Calculated using : Q Calculated using : Weighted Fraction Impervious using: $t = 6.94 * (L \times n^*)^{0.6}$ $C_{10} = 0.1 + 0.0133(^{10}I_1 - 2.5)$ $Q = \frac{A_e \times i}{360}$ $f = \sum (f_{area - 1} \times \frac{A_{area - 1}}{A_{total}}) + (f_{area - 2} \times \frac{A_{area - 2}}{A_{total}})$ Directions: 2 Enter longest length of Catchment 4 Enter Area of Catchment (Mater/Metre)	ŀ	52	0.50	11.00	0.021	Hunge	0.010	50.55	7.00		7.00	nesi mediani bensity	0.0		0.501		0.501	0.22	0.221	00.00	0.001
TOTAL 0.611 0 0.357 83.962 0.083 To TAL 0.611 0 0.357 83.962 0.083 To Calculated using : -1.25 C10 Calculated using : Weighted Fraction Impervious using: $t = 6.94 * \frac{(L \times n^*)^{0.6}}{I^{0.4} \times S^{0.30}}$ $C_{10} = 0.1 + 0.0138 (^{10}I_1 - 2.5)$ $Q = \frac{A_e \times i}{360}$ $f = \sum \left(f_{area - 1} \times \frac{A_{area - 1}}{A_{total}} \right) + \left(f_{area - 2} \times \frac{A_{area - 2}}{A_{total}} \right)$ Directions: Enter longest length of Catchment 4 Enter Area of Catchment (Ha) 2 Enter longest length of Catchment 4 Enter Area of Catchment (Ha)	ŀ																				
Tr Calculated using : $t = 6.94 * \frac{(L \times n^*)^{0.6}}{I^{0.4} \times S^{0.30}}$ Directions: $\frac{1}{2}$ Enter longest length of Catchment $\frac{1}{2}$ Tr Calculated using : $\frac{1}{1}$ C10 Calculated using : $\frac{C_{10}=0.1+0.0132(^{10}I_1-2\frac{2}{3})}{C_{10}=0.9 \times f + C_{10} \times (1-f)}$ Q Calculated using : $\frac{Q}{acculated using :}$ Weighted Fraction Impervious using: $f = \sum \left(f_{area - 1} \times \frac{A_{area - 1}}{A_{total}} \right) + \left(f_{area - 2} \times \frac{A_{area - 2}}{A_{total}} \right)$ Enter longest length of Catchment $\frac{4}{5}$ Choose Catchment (Ha) Choose Catchment (chain the function Impervious to determine fraction Impervious to determin	ľ	TOTAL	0.611		<u> </u>						7.000			0					0.357	83.962	0.083
$\frac{f_{-1.25}}{f_{1}} = 6.94 * \frac{(L \times n^{*})^{0.6}}{I^{0.4} \times S^{0.30}} \qquad \begin{array}{c} C10 \text{ Calculated using :} \\ C_{10} = 0.1 + 0.0133 \left({}^{10}I_{1} - 2.5 \right) \\ C_{10} = 0.9 \times f + C_{10} \times (1 - f) \end{array} \qquad \begin{array}{c} Q \text{ Calculated using :} \\ Q = \frac{A_{e} \times i}{360} \qquad f = \sum \left(f_{area \ 1} \times \frac{A_{area \ 1}}{A_{total}} \right) + \left(f_{area \ 2} \times \frac{A_{area \ 2}}{A_{total}} \right) \\ \hline \\ Directions: \\ \hline \\ 2 \\ \end{array}$																					
$t = 6.94 * \frac{(L \times n^*)^{0.6}}{I^{0.4} \times S^{0.30}}$ $Q = \frac{A_e \times i}{360}$ $Q = \frac{A_e \times i}{360}$ $f = \sum \left(f_{area \ 1} \times \frac{A_{area \ 2}}{A_{total}} \right) + \left(f_{area \ 2} \times \frac{A_{area \ 2}}{A_{total}} \right)$ Directions: $\frac{1}{2}$ Enter longest length of Catchment $\frac{4}{5}$ Enter Area of Catchment (Ha) Choose Catchment (ategory to determine fraction impervious $\frac{4}{5}$ Choose Catchment (Ha)		T. C.L. I.L. I.		-1.25		610	C. I							Mariaha and P							
$t = 6.94 * \frac{(L \times n)^{1/2}}{I^{0.4} \times S^{0.30}} \qquad \qquad C_{10} = 0.1 + 0.0133 ({}^{10}I_{1} - 2.5) \\ C_{10} = 0.9 \times f + C_{10} \times (1 - f) \qquad \qquad Q = \frac{A_{e} \times i}{360} \qquad \qquad f = \sum \left(f_{area \ 1} \times \frac{A_{area \ 1}}{A_{total}} \right) + \left(f_{area \ 2} \times \frac{A_{area \ 2}}{A_{total}} \right)$ Directions:		/	* \0.6			010	Calculated	using :)			Q calculated using :		weighted F	-raction imp	ervious using:					
$I = 0.9 \times I = 0.9 \times f + C_{10} \times (1 - f)$ $Q = -\frac{1}{360}$ $J = \sum_{i} \left(\int_{area} 1 \times \frac{1}{A_{ioal}} \right) + \left(\int_{area} 2 \times \frac{1}{A_{ioal}} \right)$ Directions: $Go \text{ to Fraction Impervious Table}$ $I = Enter Iongest length of Catchment I = Enter Iongest length of Catchment I = Enter Area of Catchment (Ha) Choose Catchment (Ha) Choose Catchment (ategory to determine fraction impervious I = 0.9 \times f + C_{10} \times (1 - f)$		$t = 6.94 * \frac{(L \times I)}{L}$	n`)``			$C_{10} =$	0.1 + 0.0	133(19)	1-25			$O = A_e \times i$		£ _ \	- (c	A area 1			$A_{area 2}$		
Directions: <u>Go to Fraction Impervious Table</u> 1 Enter longest length of Catchment 4 Enter Area of Catchment (Ha) 2 Enter average slope of Catchment (Metre/Metre) 5 Choose Catchment category to determine fraction impervious		$I^{0.4} \times I^{0.4}$	$S^{0.30}$			$C_{10} =$	$0.9 \times f$ +	$+C_{10}^{I}\times ($	(1-f)			$Q = \frac{360}{360}$		J = Z	J area	A_{total}	-) +(<i>J</i>	area 2 × -	A total		
1 Enter longest length of Catchment 4 Enter Area of Catchment (Ha) 2 Enter Average slope of Catchment (Metre/Metre) 5 Choose Catchment category to determine fraction impervious		Directions:												<u>Go to Fr</u>	raction Impe	ervious Table					
1 Enter ungest length of calchinett 4 Enter Area of Calchinett (Main 2004) 2 Enter average Stope of Catchinett (Main 2004) 5 Choose Catchinett Category to determine fraction impervious		1		Cates lange	at law at h af (Catabarant						4		(110)							
		1		Enter longe	ist length of C lige slope of C	Catchment (Metre)	/Metre)					4 Effect Area of Calcinnent (ria) 5 Choose Catchment category to determine fraction impervious									

3

Enter average slope of Catchment (Metre/Metre) Choose surface type of catchment from drop down list (See n value table)

- Choose Catchment category to determine fraction impervious Sum effective areas of catchments to determine Q 5 6

Detention Storage Calculator

SELECT LOCATION	Nyora]			Coefficier	nts		
PRE-DEVELOPMENT ARI	10		3.24768	-0.00907	0.00724	-0.00138	-0.00004	0.00000
POST-DEVELOPMENT ARI	10		3.24768	-0.00907	0.00724	-0.00138	-0.00004	0.00000

PRE-DEVELOPMENT											
Total Catchment Area	CA	Тс	I	Input Manual Restrictive Outflow	Calculated Restrictive Outflow						
	10										
ha	ha	mins	mm/hr	m³/s	m³/s						
0.6110	0.115	6.571	86.23	0.028	0.03						

Time Interval Start	7	(mins)
Storm Duration Time Interval (c)	2	(mins)
Pump / Outflow Outage Duration (to)	0	(mins)
Pump / Outflow Outage Duration (to)	0.00	(hrs)

Change only if required Default = Tc Vary Time interval until maximum storage volume is achieved See graph below Change only if required

Change only if required

1601444

Kufner Textiles (Australia) P/L

32 Grundy Avenue, Nyora (Western Site)

RATIONAL / POERTNER METHOD DETENTION REQUIREMENT CALCULATIONS

POST-DEVELOPMENT

Formulas used

Client:

Project: Subject:

Job No:

C Value

 $C_{10}^{1} = 0.1 + 0.0133 \times ({}^{10}I_{1} - 25)$ $C_{10} = 0.9 \times f + C_{10} \times (1 - f)$

TOTAL DETENTION STORAGE REQUIRED (m ³)	Rational /	Poertner Inflow H	ydrograph	Rational / Poertner Outflow Hydrograph				
	Qi	Time		Qo	Time			
	m³/s	mins		m³/s	mins			
40	0.000	0.0		0.000	0.0			
40	0.034	7.0	(tc)	0.028	38.4	(tx2)		
40	0.034	37.0	(ts)	0.000	44.0	(2tc+c)		
40	0.000	44.0		0.000	44.0			
	0.000	0.0						

21/11/2018

Q

10

m³/s

0.083

LN

Date:

By:

TOTAL STORAGE REQUIRED										
	Detain ARI of	1 in 10 Year Post to 1 in 10 Year Pre								
RATIONAL / POERTNER METHOD										
		m³								
40										

Pre-Developed Flow Calculations

0.611 RURAL1

Client:	Kufner Textiles (Australia) P/L	Date:	21/11/2018
Project:	32 Grundy Avenue, Nyora (Western Site)		
Subject:	PRE-DEVELOPMENT FLOW CALCULATIONS		
Job No:	1601444	Ву:	MA

Location :		Ny	ora									Coefficients			
ARI Year :		!	5						a 3.11307	ь -0.60649	с -0.01285	d 0.00758	е -0.00122	f -0.00013	g 0.00001
INPUT	1		2	3	4A					5A			6		
Catchment	Area	Catchment	Catchment Type	Calculated Tc	Manual Input Tc	Selected Tc	Selected f _p	Weighted f _p	Calculated C	Manual Input C	Selected C	Ae	Σ Ae	I 5	Q 5
	ha	Category	(For Fp)	mins	mins	mins			5		5	ha	ha	mm/hr	m³/s
Site Catchment	0.611	RURAL1	Rural - Environmental	6.57		6.57	0.1		0.170		0.170	0.10	0.104	72.89	0.021

0.000

Tc Calculated using : $t_c = 0.76 \times A^{0.38}$

TOTAL

Weighted Frac Imperv using :

6.57

$$f = \sum \left(f_{area \ 1} \times \frac{A_{area \ 1}}{A_{total}} \right) + \left(f_{area \ 2} \times \frac{A_{area \ 2}}{A_{total}} \right)$$

6.57

0.000
$C_{10} = 0.1 + 0.013 \Re ({}^{10}I_1 - 25)$
$C_{\!10} \!=\! 0.9 \!\times\! f \!+\! C_{\!10} \!\times\! \left(\!1\!-\!f\right)$

Equation 14.11 and 14.12 AR&R

0.099

Q Calculated using :

0.021

72.89

0.104

 $Q = \frac{A_e \times i}{360}$

Rational Method

Equation 5.4 AR&R

									Client:	Kufner Textiles (Australia)	P/L						Date:	21/11	/2018
		Post-Deve	loped Flow	Calculations					Project:	32 Grundy Avenue, Nyora	(Western Site)								
									Subject:	POST-DEVELOPMENT FLO	W CALCULATIONS								
									Job No:	1601444							By:	l	N
Location :			Nyora	а											Coeffici	ents			
					_							ARI							g
ARI Year :			5									5	3.11307	-0.60649079	-0.012849	0.007581	-0.001218	-0.00013	1.464E-05
INPUT	1	2	3	4				4A		5				5A			6		
1	1	1	1 1		1	1	Coloulated	Manual Innut	Coloritori										
Catalanant	Area	Length (L)	Slope (S)	Curfores		t10.4	Calculated	Ivianual Input	Selected	Catchment Category	Solostad f	Weighted	Calculated	Manual Input	Selected	Ae	ΣAe	1	Q
Catchment	h e			Surrace	n (n•)		ic .	ic .	TC	(For Fp)	Selected Ip	fp	C	Ĺ	C .	h	h e	5	5
64	114	07.00	0.040	D	0.012	40.62	7.00	mins	7.00	Desi Maritan Dessita	2.6		3		3	11d	11d	74.02	m /s
51	0.23	87.00	0.040	Range	0.013	19.63	7.00		7.00	Resi Medium Density	0.6		0.555		0.555	0.13	0.129	71.02	0.025
52	0.38	144.00	0.024	Kange	0.013	30.95	7.00		7.00	Resi Medium Density	0.6		0.555		0.555	0.21	0.210	/1.02	0.041
		-										-							
TOTAL	0.611								7.000			0					0.339	71.024	0.067
		-1.25																	
Tc Calculated using :		-1.25		C10 (Calculated	using :				Q Calculated using :		Weighted I	raction Imp	ervious using:					
(1)0.6 			4			· • ·								<pre>.</pre>		、 、		
$t = 6.94 * \frac{(L \times T)}{2}$	n)			$C_{10} =$	0.1 + 0.0	138(17	$2_1 - 25$			$O = \frac{A_e \times i}{i}$		$f = \Sigma$	T f	× A area 1	-) + (f)	× -	A area 2		
$I^{0.4} \times$	$S^{0.30}$			$C_{10} =$	$0.9 \times f +$	$-C_{10}^{I} \times ($	(1-f)			<u>9</u> - 360) – Z	- J ^{area}	A_{total}		area 2 🔨	A total		
				10	5										<i>´</i> ``		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Directions:												<u>60 to F</u>	raction Impe	ervious rable					
1		Enter longe	st length of	Catchment						4	Enter Area of Catchment	(Ha)							

b. Post-Developed Flow

2 3 Enter average slope of Catchment (Metre/Metre) Choose surface type of catchment from drop down list (See n value table)

- Choose Catchment category to determine fraction impervious Sum effective areas of catchments to determine Q 5 6

PROJECT: Road Reserve - Typical XS 16.0 m Comment Print-out date: 30/11/2018 - Time: 9:53 Data File: 1601444-32 Grundy Ave-16m Road XS.dat

1. CROSS-SECTION:

2. DISCHARGE INFORMATION:

100 year (1%) storm event

Total discharge = 0.183 cumecs

There is no pipe discharge Overland / Channel / Watercourse discharge = 0.183 cumecs

3. RESULTS: Water surface elevation = 137.800m

Main Waterway grade = 1 in 200, Main Channel / Low Flow Channel grade = 1 in 200.

	LEFT	MAIN	RIGHT	TOTAL
	<u>OVERBANK</u>	<u>CHANNEL</u>	<u>OVERBANK</u>	CROSS-SECTION
Discharge (cumecs):	0.00	0.20	0.00	0.20
D(Max) = Max. Depth (m):	0.00	0.14	0.00	0.14
D(Ave) = Ave. Depth (m):	0.00	0.05	0.00	0.05
V = Ave. Velocity (m/s):	0.00	0.62	0.00	0.62
D(Max) x V (cumecs/m):	0.00	0.09	0.00	0.09
D(Ave) x V (cumecs/m):	0.00	0.03	0.00	0.03
Froude Number:	0.00	0.92	0.00	N/A
Area (m^2):	0.00	0.32	0.00	0.32
Wetted Perimeter (m):	0.00	6.77	0.00	6.77
Flow Width (m):	0.00	6.71	0.00	6.71
Hydraulic Radius (m):	0.00	0.05	0.00	0.05
Composite Manning's n:	0.000	0.015	0.000	N/A
Split Flow?	-	-	-	Yes

4. CROSS-SECTION DATA:

	LEFT HAND	POINT	RIGHT HAND		
<u>SEGMENT NO.</u>	<u>CHAINAGE (m)</u>	<u>R.L. (m)</u>	<u>CHAINAGE (m)</u>	<u>R.L. (m)</u>	<u>MANNING'S N</u>
1	-7.850	137.980	-6.350	137.940	0.035
2	-6.350	137.940	-3.950	137.780	0.035
3	-3.950	137.780	-3.650	137.660	0.013
4	-3.650	137.660	-3.350	137.720	0.013
5	-3.350	137.720	0.000	137.830	0.013
6	0.000	137.830	3.350	137.720	0.013
7	3.350	137.720	3.650	137.660	0.013
8	3.650	137.660	3.950	137.780	0.013
9	3.950	137.780	6.650	137.940	0.013
10	6.650	137PO40 vey This copy is licer	V12.05 Beta (137.980	0.035