

Transport and Traffic Impact Assessment Report

South Leongatha

For: South Gippsland Shire Council 11 JANUARY, 2011

Project Name:	Transport and Traffic Impact Assessment Report – South Leongatha Traffic Study
Project Number:	3004603
Report for:	South Gippsland Shire Council

PREPARATION, REVIEW AND AUTHORISATION

Revision #	Date Prepared by		Reviewed by	Approved for Issue by	
1	15/11/10	M. De Marco	M. Marsicovetere	Derrick Hitchins	
2	05/01/11	M. De Marco	M. Marsicovetere	M. Marsicovetere	
2	11/01/11	M. De Marco	M. Marsicovetere	M. Marsicovetere	

ISSUE REGISTER

Distribution List	Date Issued	Number of Copies
South Gippsland Shire Council: Tony Price / Ken Griffiths	11/01/11	1 Final Copy PDF
SMEC staff:		
Associates:		
Melbourne Office Library (SMEC office location):		
SMEC Project File:		

SMEC COMPANY DETAILS

SMEC A	ustralia Pty Ltd	
Level 4, 71 Queens Road, Melbourne VIC 3004		
Tel:	(03) 9514 1500	

Fax: (03) 9514 1502

Email: michael.marsicovetere@smec.com

www.smec.com

The information within this document is and shall remain the property of SMEC Australia Pty Ltd

TABLE OF CONTENTS

1	INTRC	DUCTION	2
	1.1	Background	2
	1.2	Aim of this Report	2
	1.3	Report Structure	2
	1.4	References	2
2	PROP	OSED DEVELOPMENT	3
	2.1	Site Location	3
	2.2	Outline Development Plan (ODP)	4
3	EXIST	ING CONDITIONS ASSESSMENT	6
	3.1 I	Leongatha Structure Plan	6
	3.2 I	Land Use	6
	3.3	Existing Road Network	7
	3.3	.1 South Gippsland Highway	7
	3.3	.2 Simons Lane	8
	3.3	.3 Boags Road	9
	3.3	.4 Tarwin Ridge Road	10
	3.4 Region Context		10
	3.5 I	Existing Railway Line	11
	3.6	Great Southern Rail Trail	11
	3.7 I	Existing Road Network Traffic Volumes	11
	3.7	11	
	3.7	.2 Intersection Turning Movement Counts	12
	3.8	Public Transport	16
	3.8	.1 Train	16
	3.8	.2 Bus	16
	3.9	Pedestrians and Cyclists	16
	3.9	.1 Pedestrians	16
	3.9	.2 Cyclists	17
	3.10	Casualty Accident Statistics	17
4	TRAN	SPORT MODEL	18
	4.1	Road Network Options	18
	4.1.1 Option 1 – Simons Lane Open		18
	4.1	.2 Option 2 – Simons Lane Closed	18
	4.2	Traffic Generation Rates	19
	4.3 Traffic Generation		20
	4.4 External Traffic Growth Rate		21

4.5 Traffic Distribution	21
4.6 Traffic Assignment	26
TRAFFIC IMPACT ASSESSMENT	30
4.7 Intersection Performance Assessment	30
4.8 Intersection Turn Warrants	30
4.8.1 Junction 1	33
4.8.2 Junction 2	36
4.8.3 Junction 3	39
4.8.4 Junction 4	40
4.8.5 Junction 5	41
4.8.6 Junction 6	42
4.8.7 Junction 7	43
5 INTERNAL ROAD NETWORK REVIEW	45
5.1 Road Hierarchy	45
5.2 Road Cross Sections	45
6 INTEGRATED TRANSPORT REVIEW	46
6.1 Public Transport	46
6.1.1 Bus	46
6.2 Pedestrian and Bicycle Connectivity	46
6.2.1 Pedestrians	46
6.2.2 Bicycles	46
7 SUMMARY	47
8 RECOMMENDATIONS	49
APPENDIX A – LEONGATHA LOCAL LEVEL STRUCTURE PLAN	
APPENDIX B – TRIP GENERATION RATE CALCULATIONS	
APPENDIX C – ASSIGNMENT TRIPS BREAKDOWN	
APPENDIX D – SIDRA OUTPUTS	
APPENDIX E – TURN WARRANTS	
APPENDIX E – ENTRY AND EXIT TERMINALS	
LIST OF TABLES TABLE 1 : PROPOSED LAND USE DEVELOPMENTS	5
TABLE 2 : TRAFFIC VOLUME COUNTS	. 11
TABLE 3 : BUS SERVICES IN LEONGATHA	. 16
TABLE 4 : LAND USE TRAFFIC GENERATION RATES	. 20
TABLE 6 : RELATIONSHIP BETWEEN ODP AREA AND PRECINCT	. 23
I ABLE 7 : PEAK HOUR PRIVATE VEHICLE MOVEMENTS ACCESSING THE ODP	26
TABLE 8 : ODP AREA IN AND OUT TRIPS ASSIGNED TO EXTERNAL ZONES AND	0
PRECINCTS	. 27

TABLE 9 : LEVEL OF SERVICE	30
TABLE 10: TURN WARRANT ASSESSMENT AT JUNCTION 1	31
TABLE 11: TURN WARRANT ASSESSMENT AT JUNCTION 2	32
TABLE 12: TURN WARRANT ASSESSMENT AT JUNCTION 6	32
TABLE 13: TURN WARRANT ASSESSMENT AT JUNCTION 7	33
TABLE 14: COMPARISON OF RESULTS AT JUNCTION 1 UNSIGNALISED	
INTERSECTION	34
TABLE 15: COMPARISON OF RESULTS AT JUNCTION 1 WITH ROUNDABOUT	36
TABLE 16: COMPARISON OF RESULTS AT JUNCTION 2 WITH UNSIGNALISED	
INTERSECTION	37
TABLE 17: COMPARISON OF RESULTS AT JUNCTION 2 WITH ROUNDABOUT	39
TABLE 18: COMPARISON OF RESULTS AT JUNCTION 3	40
TABLE 19: COMPARISON OF RESULTS AT JUNCTION 4	41
TABLE 20' COMPARISON OF RESULTS AT JUNCTION 5	42
TABLE 21: COMPARISON OF RESULTS AT JUNCTION 6	43
TABLE 22: COMPARISON OF RESULTS AT JUNCTION 7	44
LIST OF FIGURES	
EIGURE 1' LOCALITY PLAN (SOURCE: SOUTHERN LEONGATHA OUTLINE	
	2
	.0
	.4
	7
HTTP://SERVICES.LAND.VIC.GOV.AU/MAPS/PMO)	. /
FIGURE 4 : TRAFFIC VOLUMES AT SOUTH GIPPSLAND HIGHWAY / SIMONS LANE	./
BUAGS RUAD	13
FIGURE 5 : TRAFFIC VOLUMES ARE BASS HIGHWAY / SIMONS LANE	14
FIGURE 6 : TRAFFIC VOLUMES AT SOUTH GIPPSLAND HIGHWAY / PARR STREET	
	14
FIGURE 7 : TRAFFIC VOLUMES PARR STREET / SOUTH GIPPSLAND HIGHWAY	
(SERVICE ROAD)	15
FIGURE 8 : TRAFFIC VOLUMES SOUTH GIPPSLAND HIGHWAY / GREENWOOD	
PARADE	15
FIGURE 9: OPTION 1 - SIMONS LANE OPEN	18
FIGURE 10: OPTION 2 – SIMONS LANE CLOSED	19
FIGURE 11: LOCATION OF PRECINCTS AND EXTERNAL ZONES	22
FIGURE 12: IN AND OUT TRIP DISTRIBUTION PERCENTAGES FROM PRECINCT 12	24
FIGURE 13: IN AND OUT TRIP DISTRIBUTION PERCENTAGES FROM PRECINCT 22	24
FIGURE 14: IN AND OUT TRIP DISTRIBUTION PERCENTAGES FROM PRECINCT 32	25
FIGURE 15: IN AND OUT TRIP DISTRIBUTION PERCENTAGES FROM PRECINCT 42	25
FIGURE 16 : OPTION 1 PEAK HOUR TRAFFIC VOLUMES	28
FIGURE 17 : OPTION 2 PEAK HOUR TRAFFIC VOLUMES	29
FIGURE 18: KEY JUNCTION NUMBERING CONFIGURATION	31
FIGURE 19: PROPOSED INTERSECTION AT JUNCTION 1 – OPTION 1	33
FIGURE 20: PROPOSED INTERSECTION AT JUNCTION 1 – OPTION 2	34
FIGURE 21: PROPOSED ROUNDABOUT AT JUNCTION 1 – OPTION 1	35
FIGURE 22: PROPOSED ROUNDABOUT AT JUNCTION 1 – OPTION 2	35
FIGURE 23: PROPOSED INTERSECTION AT JUNCTION 2 – OPTION 1	36
FIGURE 24' PROPOSED INTERSECTION AT JUNCTION 2 – OPTION 2	37
FIGURE 25: PROPOSED BOUNDABOUT AT JUNCTION $2 - OPTION 1$	38
FIGURE 26 PROPOSED BOUNDAROUT AT UNCTION 2 – OPTION 2	38
	30
	<u>70</u>
	- - -0 //1
	+ I 10
FIGURE 30. FROFUSED INTERSECTION AT JUNCTION 7	+∠ ⁄^
FIGURE 31. FROFUSED INTERSECTION AT JUNCTION /	43 15
	4D

1 INTRODUCTION

1.1 Background

SMEC Australia Pty Ltd has been engaged by South Gippsland Shire Council to prepare a Transport and Traffic Impact Assessment Report for the area south of South Leongatha based on the Southern Leongatha Outline Development Plan (ODP).

1.2 Aim of this Report

The aim of this report is to assess the implications of the area south of Leongatha including consequences beyond the ODP area. The report will evaluate what impact the traffic generated from the overall development will have on the existing road network. A performance assessment of the key intersections identified in the ODP Infrastructure Plan will also be undertaken. In particular the report will assess the traffic implications if Simons Lane remains open or is truncated at the Bass Highway intersection.

1.3 Report Structure

The transport and traffic impact assessment for this proposal covers 5 areas as follows:

- Existing Conditions Assessment
- Transport Model
- Traffic Impact Assessment
- Internal Road Network Review
- Integrated Transport Review

1.4 References

The following references were used to assist in the preparation of this report:

- Austroads Guide to Traffic Management, Part 12: Traffic Impacts of Development
- Austroads Guide to Traffic Management, Part 3: Guide to Traffic Studies and Analysis
- Austroads Guide to Road Design, Part 4A: Unsignalised and Signalised Intersections
- Austroads Guide to Road Design, Part 6A: Pedestrian and Cyclists Paths
- RTA Guide to Traffic Generating Developments, Version 2.2, October 2002
- Leongatha Structure Plan, June 2008
- Southern Leongatha Outline Development Plan Discussion Paper, July 2010
- Korumburra & Leongatha Traffic Study, O'Brien Traffic, March 2008
- Department of Planning and Community Development, Planning Maps Online
- Department of Transport Guidelines for Land Use and Development: Public Transport, 2008

2 PROPOSED DEVELOPMENT

2.1 Site Location

The ODP area is located in south Leongatha, Victoria to the south-east of the Leongatha town centre.

The ODP area is bounded by Parr Street and existing residential developments to the north, the Great Southern Rail Trail and Greenwood Parade to the west, Simons Lane / Boags Road to the south and Coalition Creek to the east. Refer to Figure 1 below for the site location.

The site is located approximately 1.8km south of the Leongatha town centre.

Figure 1: Locality Plan (Source: Southern Leongatha Outline Development Plan – Discussion paper)

Although the current land zoned Farm Zone (FZ) to the west of the Great Southern Rail Trail is not included in the ODP study area, the issues surrounding the full length of Simons Lane will be assessed as the development poses potential consequences to the operation and performance of this road.

2.2 Outline Development Plan (ODP)

The Outline Development Plan (ODP) provides a strategic framework to help manage the use and development of a particular site or area over an extended period of time.

The ODP study area outlined in Figure 1 consists of a total land area of 208ha, of which 84ha is on the western side of the South Gippsland Highway and 124ha is on the eastern side of the South Gippsland Highway. The rezoning of land across the ODP is to support the Leongatha Structure Plan and would result in the following land use types:

- 14ha commercial land
- 194ha urban residential zoning of which 41ha is already zoned as low density residential

The land use type proposed for the ODP area is outlined in the ODP Land Use Plan. Refer Figure 2 below. The land use plan is based on the Leongatha Framework Plan clause 21.04.4 of the Planning Scheme. This plan details Council's preferred use for the area within the ODP.

Figure 2 below shows the proposed development areas outlined in the ODP.

Figure 2: Proposed ODP land use map

Table 1 below shows a breakdown of the proposed land use development areas outlined in the Southern Leongatha Outline Development Plan – Discussion Paper.

Table 1 : Proposed land use developments

Area*	Current Zone	Proposed Zone	Land Use	Approximate Size (ha)
А	FZ	Commercial	Bulky Goods Retail Area	8
В	FZ	Retail / Commercial	Retail / Commercial Area	5
С	FZ	R1Z	Residential Zone 1	55
D**	FZ	LDRZ	Low Density Residential Zone	12
E**	FZ	LDRZ	Low Density Residential Zone	9
F	FZ	R1Z	Residential 1 Zone	21
G	LDRZ	-	Low Density Residential Zone	17
н	LDRZ	R1Z	Low Density Residential Zone	22
I	FZ	LDRZ	Low Density Residential Zone	10
J	R1Z	-	Residential Zone 1	14
К	FZ	R1Z	Residential Zone 1	24
L	R1Z	-	Residential Zone 1	11

* Refer to Figure 2 for the location of ODP areas ** For the purpose of the traffic report we have amended the areas stipulated in the ODP for catchments D and E. Catchment D now represents the LDRZ land to the west of South Gippsland Highway where as catchment E represents the land to the east. Refer Figure 16 and Figure 17 for these new areas.

3 EXISTING CONDITIONS ASSESSMENT

3.1 Leongatha Structure Plan

The Leongatha Structure Plan defines the urban growth areas and transport access and mobility features within Leongatha. It provides a strategic framework for the future land use developments of Leongatha over the next 20 years. Refer to Appendix A for a copy of the Leongatha Local Level Structure Plan.

The Leongatha Structure Plan identifies the following items relevant to the ODP study area:

- Provision of a future connector road that runs from Simons Lane to Greenwood Parade and South Gippsland Highway;
- Provision of a pedestrian and cycle access to the Great Southern Rail Trail adjoining new residential developments;
- All new subdivisions to be connected to a pedestrian and cycle network;
- The possible reinstatement of the passenger rail service between Cranbourne to Leongatha;
- Provision for a future central north-south pedestrian and cycle route through Leongatha via the Great Southern Rail Trail;
- Residential subdivisions have clear linkages to existing residential areas, road infrastructure and pedestrian / cycle ways; and
- Strong linkages to Melbourne and Gippsland.

3.2 Land Use

The ODP study area consists of a total land area of 208ha, of which 84ha is on the western side of the South Gippsland Highway and 124ha is on the eastern side of the South Gippsland Highway.

The ODP area is predominately undeveloped farm land, apart from seven dwellings bunched in the south-west corner and ten dwelling located east of the South Gippsland Highway. A plant nursery and motel are also located east of the South Gippsland Highway with frontage access.

Key land uses surrounding the subject site include:

- 29.5ha Residential 1 Zone (R1Z)
- 41ha in the Low Density Residential Zone (LDRZ)
- 137.5 ha Farming Zone (FZ)

Refer to the land use plan, Figure 3 below.

Figure 3: Land Use Plan (source: http://services.land.vic.gov.au/maps/pmo)

3.3 Existing Road Network

An inspection of the proposed development site, South Gippsland Highway, Simons Lane, Boags Road, Tarwin Ridge Boulevard and Parr Street was undertaken on Friday 20 September 2010, between the hours of 11am and 1pm.

3.3.1 South Gippsland Highway

South Gippsland Highway is a sealed two-lane, two-way arterial road. It is a declared major arterial road pursuant to the Victoria Road Management Act 2004.

North of Parr Street, the South Gippsland Highway consists of a 30.5m road reserve made up of two 3.3m traffic lanes. A narrow median is present to provide protection and channelization for vehicles turning right into Parr Street. Kerb and channel is provided along the edge of the carriageway.

Footpaths are present at South Gippsland Highway / Parr Street and continue north along both edges of the carriageway adjacent to the residential properties.

The road alignment is generally straight and undulating. Refer Photo 1. A posted speed limit of 60km/h applies to this section of the South Gippsland Highway.

Between Parr Street and Simons Lane, the South Gippsland Highway consists of a 19.7m road reserve made up of two 3.5m traffic lanes. There is no kerb and channel provided along the edge of the carriageway. Open drains are present along both edges of the carriageway. Centreline line-marking is present. Footpaths are not present.

The road alignment is generally straight and undulating with a gentle incline to a crest to the south of Parr Street. Refer Photo 2. A posted speed limit of 70km/h applies to this section of the South Gippsland Highway.

Photo 1: South Gippsland Highway / Parr Street intersection, looking south

Photo 2: South Gippsland Highway, between Parr Street and Simons Lane, looking south

3.3.2 Simons Lane

Simons Lane is an un-sealed two-lane, two-way undivided rural type road.

It consists of a 19.9m road reserve made up of two 3.5m traffic lanes. Open drains are present along both edges of the carriageway. Centreline line-marking is not present. Footpaths are not present.

The road alignment is straight and undulating. Refer Photo 3.

The posted speed limit on Simons Lane is 100km/h.

Photo 3: Simons Lane, looking east

3.3.3 Boags Road

Boags Road is an unsealed two-lane, two-way undivided rural type road.

It consists of a 7.0m carriageway. Open drains are present on both sides of the carriageway. Centreline line-marking is not present. Footpaths are not present.

The road alignment is generally straight and undulating. Refer Photo 4.

The posted speed limit on Boags Road is 100km/h.

Photo 4: Boags Road, looking east

3.3.4 Tarwin Ridge Road

Tarwin Ridge Road is a sealed two-lane, two-way undivided rural type road. It provides connectivity to Boags Road to the south and is truncated to the north.

It consists of a 7.0m carriageway. Kerb and channel is present along both edges of the carriageway. Footpaths are present on the western side of the carriageway.

The road alignment is winding and undulating. Refer Photo 5.

There is no posted speed limit on Tarwin Ridge Road.

Photo 5: Tarwin Ridge Road, looking north

3.4 Region Context

The South Gippsland Highway provides a north–south transport corridor, linking Leongatha to Korumburra / Melbourne to the north and Foster / Wilsons Promontory to the south-east.

The Bass Highway provides a north–south transport corridor, linking Leongatha to Inverloch to the south.

Outside of the ODP study area, the Strzelecki Highway to the north of the Leongatha town centre provides an east-west transport corridor, linking Leongatha to Morwell and Traralgon and neighbouring townships.

South Gippsland Highway, Bass Highway and Strzelecki Highway are all approved B-double and Higher Mass Limit Truck routes on the VicRoads approved Heavy Vehicle Access Maps.

3.5 Existing Railway Line

The existing Cranbourne to Leongatha railway line was part of the South Gippsland regional rail network, operating both passenger and freight services. In 1993, the State Government withdrew the passenger train services and replaced them with road coaches. The existing railway line, railway reservation and supporting infrastructure have remained untouched since its decommissioning. The rail reserve now forms the basis of the Great Southern Rail Trail. The State Government has withdrawn its commitment to reinstate the passenger services in the short term, however the reinstatement of a passenger and/or freight railway connection may be provided in the future.

3.6 Great Southern Rail Trail

The Great Southern Rail Trail is a 49km pedestrian and cycle track which meanders through the lush dairy cattle farmland and remnant bush of the Gippsland hills.

The Great Southern Rail Trail runs between Leongatha and Foster and provides a safe and even track to walk, run or cycle. Since the decommissioning of the South Gippsland regional rail network, the existing railway line south of Leongatha has since been removed and replaced by The Great Southern Rail Trail. Throughout its length, the Great Southern Rail Trail is generally undulating and well maintained with a surface of compacted gravel.

3.7 Existing Road Network Traffic Volumes

3.7.1 Traffic Volumes

South Gippsland Shire Council provided traffic volumes at the following locations.

- Simons Lane, 100m off Bass Highway, dated September 2010
- Boags Road, 100m off South Gippsland Highway, dated February 2010
- Greenwood Parade, 100m from South Gippsland Highway, dated December 2008
- Parr Street, 400m off Greenwood parade, dated August 2005

A summary of the traffic volumes for all vehicles is provided in Table 2.

South Gippsland Shire Council has identified high traffic movements occurring during the PM peak period, and as such, only the PM peak period will be analysed for the overall development of the ODP area.

ounts
;

	Total	% Heavy Vehicles
Simons Lane		
24 hour weekday average (veh/day)	128	7.2
AM peak hour (veh/hour)	13	-
PM peak hour (veh/hour)	17	-

	Total	% Heavy Vehicles
Boags Road		
24 hour weekday average (veh/day)	194	9.7
AM peak hour veh/hour)	17	-
PM peak hour (veh/hour)	20	-
	Total	% Heavy Vehicles
Greenwood Parade		
24 hour weekday average (veh/day)	693	1.4
AM peak hour veh/hour)	53	-
PM peak hour (veh/hour)	57	-
	Total	% Heavy Vehicles
Parr Street		
24 hour weekday average (veh/day)	1093	4.0
AM peak hour veh/hour)	82	-
PM peak hour (veh/hour)	116	-

3.7.2 Intersection Turning Movement Counts

Intersection turning movement surveys were conducted by Sky High Pty Ltd on Wednesday 15th September 2010 between 3pm and 6pm. The turning movement counts were undertaken at the following intersections:

- South Gippsland Highway / Simons Lane / Boags Road
- Bass Highway / Simons Lane
- South Gippsland Highway / Parr Street
- Parr Street / South Gippsland Highway Service Road
- South Gippsland Highway / Greenwood Parade

The results of the turning movement counts are as follows:

- South Gippsland Highway / Simons Lane / Boags Road Intersection
 - PM peak period occurred between 3:30pm and 4:30pm
 - 450 vehicles were recorded in the PM peak period
 - 32 commercial vehicle were recorded in the PM peak period
- Bass Highway / Simons Lane Intersection

- PM peak period occurred between 4:45pm and 5:45pm
- 376 vehicles were recorded in the PM peak period
- 7 commercial vehicle were recorded in the PM peak period
- South Gippsland Highway / Parr Street Intersection
 - PM peak period occurred between 3:30pm and 4:30pm
 - 677 private vehicles were recorded in the PM peak period
 - 41 commercial vehicle were recorded in the PM peak period
 - 17 u-turning vehicles were recorded
- Parr Street / South Gippsland Highway Service Road Intersection
 - PM peak period occurred between 3:00pm and 4:00pm
 - 160 private vehicles were recorded in the PM peak period
 - 1 commercial vehicle were recorded in the PM peak period
- South Gippsland Highway / Greenwood Parade Intersection
 - PM peak period occurred between 3:15pm and 4:15pm
 - 755 vehicles were recorded in the PM peak period
 - 37 commercial vehicle were recorded in the PM peak period

Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8 show the traffic volumes on each approach to the intersections during the PM peak.

Figure 4 : Traffic volumes at South Gippsland Highway / Simons Lane / Boags Road

Figure 5 : Traffic volumes are Bass Highway / Simons Lane

Figure 6 : Traffic volumes at South Gippsland Highway / Parr Street

Figure 7 : Traffic volumes Parr Street / South Gippsland Highway (Service Road)

Figure 8 : Traffic volumes South Gippsland Highway / Greenwood Parade

3.8 Public Transport

3.8.1 Train

Leongatha railway station is located on Long Street approximately 1.8km north of the ODP study area. Passenger train services were ceased in 1993. The tracks south of Leongatha have since been dismantled and now forms part of the Great Southern Rail Trail. The existing railway station is currently used as the V/Line Bus terminus.

Leongatha forms part of the South Gippsland Tourist Railway services which operate for visitors on the following days:

- Every Sunday
- Public holiday (except Christmas and Good Friday)
- Every Wednesday during the Victorian school holiday period

3.8.2 Bus

There are numerous bus services which operate throughout Leongatha, including providing connectivity to Melbourne and neighbouring townships. Refer Table 3 for a breakdown of the bus services operating throughout Leongatha.

Operator	Route Name	Frequency	Operating Days
Gippsland Bus Services	Traralgon to Wonthaggi	2-3 per day	Every Day
Moons Bus Lines	Foster to Leongatha	1 per week	Thursday Only
South Gippsland Transport Connections	Venus bay	6 per week	Sunday, Monday and Friday
V/Line	Yarram & Leongatha to Melbourne	4-8 per day	Every Day
Dysons	Leongatha to Wonthaggi	1 per day	School days

Table 3 : Bus services in Leongatha

3.9 Pedestrians and Cyclists

3.9.1 Pedestrians

The Great Southern Rail Trail provides connectivity between the Leongatha town centre and Simons Lane.

There are no formal footpaths present along South Gippsland Highway, Simons Lane, Boags Road and Parr Street within the ODP study area.

Footpaths are only provided at the following locations:

• East side of Tarwin Ridge Road

3.9.2 Cyclists

The Great Southern Rail Trail provides a formal off road cycle path within the ODP study area. The Great Southern Rail Trail forms the western boundary of the ODP study area. There are no formal on road cycle lanes within close proximity of the ODP study area.

3.10 Casualty Accident Statistics

VicRoads' Crashstats database indicates that one casualty crash has been recorded within the study area in the 5-year period between January 2005 and December 2009.

The crash occurred at the intersection of South Gippsland Highway and Boags Road. The intersection type crash involved a car failing to stop along Boags Road colliding with a motorist on South Gippsland Highway. The accident resulted in a serious injury to the 3 occupants.

4 TRANSPORT MODEL

The transport model will assess the traffic volumes generated from the land use precincts outlined in the ODP study area for the following two road network options:

- Option 1 Simons Lane open at Bass Highway
- Option 2 Simons Lane closed at Bass Highway

4.1 Road Network Options

4.1.1 Option 1 – Simons Lane Open

The existing intersection of Bass Highway / Simons Lane will remain open to service the ODP area from the west. The intersection would retain its current configuration of a T-intersection with 'give-way' control on the minor approach. Refer to Figure 9 for the road network with Simons Lane open.

The current intersection configuration of Bass Highway / Simons Lane is currently unsatisfactory as it is located near a crest and has restricted sight distances. If the traffic assessment supports the retention of Simons Lane, it is strongly recommended that the current intersection arrangement be redesigned to improve the safe intersection sight distance and achieve compliance with Austroads guidelines.

Figure 9: Option 1 - Simons Lane open

4.1.2 Option 2 – Simons Lane Closed

Under Option 2, the existing intersection of Bass Highway / Simons Lane is to be truncated at the western end. To compensate for this closure, it is recommended that a new east-west road connection (extension of Parr Street to Bass Highway) be constructed to allow the easy and quick distribution of traffic around the ODP area. Without this extension, people wanting to access the development area would be required to travel the extra distance to Young Street.

The Parr Street extension has been selected as a suitable road extension for the following reasons:

- there is currently an existing road reserve on the land west of the Great Southern Rail Trail,
- its intersection with Bass Highway provides adequate safe intersection sight distances on both approaches,
- it will reduce the travel time for people wanting to travel from Bass Highway south to access the development area, and
- the extension would be required to service the future development of land to the west of the Great Southern Rail Trail.

It is noted that at full development of the South Leongatha ODP, this new road connection may not be required until Young Street and it's intersections with South Gippsland Highway and the Bass Highway reach capacity. Therefore careful monitoring of Young Street is required to determine when this extension is to be constructed.

However for the purpose of this report the Parr Street extension has been assessed as follows. The future intersection would form a T-intersection with 'give-way' control on the minor approach. Refer to Figure 10 for the indicative road network with Simons Lane closed.

Figure 10: Option 2 – Simons Lane closed

4.2 Traffic Generation Rates

Given that the proposed residential development areas are zoned as either Low Density Residential Zone (LDRZ) or Residential 1 Zone (R1Z), it is anticipated that the traffic generation rates will be slightly different. Therefore the trip generations for each of these zones have been determined based on traffic counts conducted around the ODP study area.

The following two roads were selected and traffic count surveys were carried out over a two week period by the South Gippsland Shire Council.

- Blair Crescent lies within a R1Z north of the study area
- Boags Road lies within a LDRZ located along the southern border of the study area

Both roads are 'no through roads', therefore a large majority of the private vehicle trips on these roads can be assumed to originate from the residential dwellings. Heavy vehicle trips have been excluded in determining the daily trip generation rates and peak hour factors

calculations. A full summary of the generation rate and peak hour factor calculations are provided in Appendix B.

Peak hour trip generation rates for the bulky goods and commercial retail land uses were sourced from the RTA Guide to Traffic Generating Developments, Version 2.2, October, 2002.

The traffic generation rates applicable for each land use within this development are shown in Table 4 below.

It should be noted that the proposed traffic generation rates quoted in Table 4 for Bulky Goods and Commercial Retail development are quite high for a town like Leongatha and generation rates of this type may never be realised. However without reliable traffic survey data within the industry, we have taken a conservative approach and adopted the RTA Guide's rates to calculate the traffic generated from these types of developments.

	Traffic Generation Rates					
Land Use	Daily Vehicle Trips	Peak Hour Vehicle Trips	Peak Generation Rate			
Residential (R1Z)	7	10%	0.7 trips/lot			
Low Density Residential (LDRZ)	10	11%	1.1 trips/lot			
Bulky Goods	-	-	2.5 trips/100m ²			
Commercial Retail	-	-	2.0 trips/100m ²			

Table 4 : Land use traffic generation rates

4.3 Traffic Generation

The proposed developments within the ODP study area will generate approximately 2,162 peak hour vehicle trips. Table 5 shows a summary of both the daily and peak hour trips generated in each of the areas in the ODP (refer to Figure 2 for the ODP areas).

The number of lots per hectare for the R1Z and LDRZ areas have been determined by dividing the total number of lots over the total areas for that zone, the rates come to 10 lots/ha and 1.4 lots/ha respectively. This lower than average LDRZ lot yield accounts for a range of site specific matters including the fragmented ownership pattern, established dwelling developments, proximity to waterways and the existing drainage reserves. These factors are likely to reduce potential lot yields per ha.

ODP Area*	Type of Development	Area Size (ha)	No. Lots	Floor Space (m ²)	Proposed Daily Vehicle Trips	Proposed Peak Hour Vehicle Trips
А	Bulky Goods	8	-	32,000	-	800
В	Retail / Commercial	5	-	13,000	-	260
С	Residential	55	550	-	3850	385
D**	Low Density Residential	12	17	-	170	19

Table 5 : Traffic generation

ODP Area*	Type of Development	Area Size (ha)	No. Lots	Floor Space (m²)	Proposed Daily Vehicle Trips	Proposed Peak Hour Vehicle Trips
E**	Low Density Residential	9	12	-	120	13
F	Residential	21	210	-	1470	147
G	Low Density Residential	17	24	-	240	26
н	Residential	22	220	-	1540	154
I	Low Density Residential	10	14	-	140	15
J	Residential	14	140	-	980	98
к	Residential	24	240	-	1680	168
L	Residential	11	110	-	770	77

* Refer to Figure 2 for the location of ODP areas

** For the purpose of the traffic report we have amended the areas stipulated in the ODP for catchments D and E. Catchment D now represents the LDRZ land to the west of South Gippsland Highway where-as catchment E represents the land to the east. Refer Figure 16 and Figure 17 for these new areas.

4.4 External Traffic Growth Rate

It is estimated that the average annual percent change in population for Leongatha is 2% per annum. In order to estimate the future 2026 year external traffic volumes, a 2% compounded growth per year has been added to the existing traffic volumes.

4.5 Traffic Distribution

Given the absence of Origin / Destination (OD) surveys and a traffic model covering the ODP study area, a high level analysis of the existing intersection turning movement counts has been undertaken. This analysis will assist in determining the existing traffic distribution pattern which can then be applied to the proposed development area. The analysis was undertaken as follows.

A large portion of the current area is undeveloped with most of the existing developments situated near or north of Parr Street towards the town centre. Therefore travel patterns in that area are assumed to vary compared to areas around Simons Lane or Boags Road. In addition, travel patterns around Boags Road are expected to differ compared to Simons Lane primarily due to the fact that Simons Lane can be used for through trips between Bass Highway and South Gippsland Highway. Further trips generated from Simons Lane heading northbound towards the north-west regions of Leongatha have the option of using Bass Highway whereas the same type of trip generated from Boags Road would use South Gippsland Highway.

To account for the potential differences in travel patterns, the region bounded by the traffic count locations mentioned above have been disaggregated into three main sub-areas, Precincts 1, 2, and 3, refer Figure 11 below. Therefore the distribution of residential trips generated from the ODP Areas will adopt the same travel patterns assigned to the Precinct that they belong to. There is a fourth subarea (Precinct 4) which represents the distribution of trips to/from the retail and bulky goods area. The traffic distribution for this precinct has been assumed as the average of Precincts 1 to 3.

Trips outside of the traffic count locations have been treated as external trips represented by the four main travel movements:

- Northern direction/Town Centre via South Gippsland Highway (South Gippsland Hwy North)
- Northern direction via Bass Highway from Simons Lane (Bass Hwy North)
- Southern direction via South Gippsland Highway (South Gippsland Hwy South)
- Southern direction via Bass Highway from Simons Lane (Bass Hwy South)

Allowances have been made in the calculations for trips between precincts but it is expected that most trips would travel to and from the external zones with a majority heading in northern direction towards the town centre using South Gippsland Highway. Internal precinct trips have been ignored with the exception of Precinct 3 where it covers a much larger area. These trips have been assumed as eastbound and westbound through traffic crossing South Gippsland Highway at Greenwood Parade and Parr Street.

Figure 11 below shows the location of the precincts and the external zones.

Figure 11: Location of Precincts and External Zones

The following assumptions have been made when calculating the traffic distribution percentages:

- 25% of traffic from Bass Highway are through traffic to South Gippsland Highway
- 25% of traffic from South Gippsland Highway are through traffic to Bass Highway
- All traffic between Parr Street and Simons Lane along South Gippsland Highway are through traffic
- Traffic count volumes at intersection between Parr Street and South Gippsland Highway Service Road have been ignored as inclusion of these volumes would distort

the travel patterns for Precinct 3. This is due to the presence of the hospital which would attract trips from other external locations outside of the study area

 40% of traffic to and from Precinct 3 travelling to the north uses McDonald Street. This has been based on traffic turning count information conducted at Parr Street / McDonald Street by SMEC staff members.

Calculation of distribution percentages for trips into and out of the Precincts 1, 2 and 3 have been carried out using existing turning movement percentages from the traffic count surveys. For example, trips into Precinct 2 comprised of:

- through volumes from Simons Lane
- left turning volumes from South Gippsland Highway southbound, and
- right turning volumes from South Gippsland Highway northbound

Each of these turning movements is then traced back to their respective upstream intersections and the volumes further broken down based on the turning movement percentages at that upstream intersection. The process continues until the trips get traced back to the external zone or the other Precincts. Similarly trips out of Precinct 2 have been applied using the same approach, but adopting the existing turning movement percentages for the opposite direction.

At Precinct 1, distributions of IN and OUT trips have been based on turning movement percentages at Simons Lane / Bass Highway intersection and Simons Lane / Boags Rd / South Gippsland Highway intersection, taking into account the assumptions made on the percentage of through traffic between these intersections. At Precinct 3, distributions of IN and OUT trips have been based on the average turning movement percentages at South Gippsland Highway / Greenwood Parade intersection and South Gippsland Highway / Parr Street intersection.

Each of the ODP area assumes a set of IN and OUT trip distribution percentages depending on the Precinct they belong to, this relationship is shown in Table 6. Figure 12 to Figure 15 show the distribution percentages of IN and OUT trips to the different Precincts.

Precinct	ODP Area
Precinct 1	C, D, L
Precinct 2	E, G, I
Precinct 3	F, H, J, K
Precinct 4	А, В

Figure 12: IN and OUT Trip Distribution Percentages from Precinct 1

Figure 14: IN and OUT Trip Distribution Percentages from Precinct 3

Figure 15: IN and OUT Trip Distribution Percentages from Precinct 4

For the assessment of Option 2, the closure of Simons Lane and the extension of Parr Street to the Bass Highway, the traffic that is distributed through Simon's Lane from the four precincts have been diverted to Parr Street.

4.6 Traffic Assignment

Table 7 below summarises the predicted total peak hour trips from each ODP area that is assigned onto the road network, based on the traffic generation and distribution assumptions described in the previous section.

			PM	Peak	
ODP Area	Precinct No.	Land Use	Total Peak Hour Vehicle Trips	In	Out
A	Precinct 4	Bulky Goods	800	400	400
В	Precinct 4	Retail / Commercial	260	130	130
С	Precinct 1	Residential	385	223	162
D	Precinct 1	Low Density Residential	19	10	9
E	Precinct 2	Low Density Residential	13	7	6
F	Precinct 3	Residential	147	85	62
G	Precinct 2	Low Density Residential	26	13	13
Н	Precinct 3	Residential	154	89	65
I	Precinct 2	Low Density Residential	15	8	8
J	Precinct 3	Residential	98	57	41
К	Precinct 3	Residential	168	97	71
L	Precinct 1	Residential	77	45	32
	Total		2162	1164	999

Table 7	Peak hour	private v	ehicle movement	s accessing	the ODP area
	i can noui	private v		3 doccasing	

The above traffic assignment is based on the following directional split of traffic entering and exiting the ODP area:

- Bulky Goods 50% In / 50% Out
- Retail / Commercial 50% In / 50% Out
- Low Density Residential 51% In /49% Out
- Residential 58% In/42% Out

Applying the distribution percentages for each of the four Precincts shown in Figure 12 to Figure 15 with the IN and OUT trips in each ODP area, we arrived at the following trips to be assigned to the four external zones and three Precincts as shown in Table 8.

		PM Peak Hour Trips							
ODP Area	Split	Bass Hwy (Nth)	Bass Hwy (Sth)	Sth Gippsland Hwy (Nth)	Sth Gippsland Hwy (Sth)	Precinct 1	Precinct 2	Precinct 3	
^	IN	27	22	242	29	23	17	39	
A	OUT	8	8	284	31	35	17	17	
Р	IN	9	7	79	10	7	6	13	
D	OUT	3	3	92	10	11	6	6	
0	IN	37	34	99	4	0	28	22	
C	OUT	5	5	120	14	0	17	0	
n	IN	2	1	4	0	0	1	1	
D	OUT	0	0	7	1	0	1	0	
E	IN	0	0	4	0	1	0	1	
E	OUT	0	0	4	0	2	0	0	
	IN	1	0	65	15	0	1	4	
	OUT	1	0	48	6	1	1	4	
G	IN	0	0	8	0	2	0	2	
G	OUT	0	0	8	0	3	0	1	
ц	IN	1	0	68	15	0	1	4	
п	OUT	1	0	50	7	2	1	4	
	IN	0	0	5	0	1	0	1	
1	OUT	0	0	5	0	2	0	0	
	IN	0	0	43	10	0	0	3	
J	OUT	0	0	32	4	1	1	3	
K	IN	1	0	75	17	0	1	5	
r.	OUT	1	0	55	7	2	2	4	
1	IN	7	7	20	1	0	6	4	
L	OUT	1	1	24	3	0	3	0	
Sub	IN	85	71	712	101	34	61	99	
total	OUT	20	17	729	83	59	49	39	
Total*	IN				1163				
iotai	OUT	996							

Table 8 : ODP area IN and OUT trips assigned to external zones and precincts

* Differences in trip totals between Table 7 and Table 8 are due to rounding errors

The resultant peak hourly flows for each of the two network options have been derived by combining the above peak hour trips for each ODP area with the uplifted peak hour external traffic volumes adopting a 2 per cent annual compound growth to the 2026 ultimate year.

Figure 16 and Figure 17 show the new traffic assigned to the two network options. Appendix C shows the breakdown of the trips assigned to the network for these options.

SOUTH LEONGATHA PM PEAK HOUR TRAFFIC VOLUME - OPTION 1 (EXISTING ROAD NETWORK)

Figure 16 : Option 1 peak hour traffic volumes

SOUTH LEONGATHA PM PEAK HOUR TRAFFIC VOLUME - OPTION 2 (PARR STREET EXTENSION & CLOSURE OF SIMONS LANE ACCESS TO/FROM BASS HIGHWAY)

Figure 17 : Option 2 peak hour traffic volumes

4.7 Intersection Performance Assessment

SIDRA Intersection 5.0 was used to assess the performance of the key intersections pre and post development. SIDRA is a key tool used for this type of assessment as it helps identify the "Level of Service" and "Degree of Saturation" of the intersection.

Level of Service is defined as a qualitative measure for ranking *"operating conditions"*, based on factors such as speed, travel time, freedom to manoeuvre, interruptions, comfort and convenience¹. There are six levels of service, from A to F, with level of service A representing the best operating condition and level of service F the worst, *ibid*.

The Degree of Saturation is defined as the ratio of the arrival flow (demand) to the capacity of the approach during the same period¹. The degree of saturation of an intersection approach ranges from close to zero for very low traffic flows and up to one for saturated flow or capacity, *ibid*.

For unsignalised intersections and roundabouts, the "practical" Degree of Saturation is in the range of 0.80 to 0.85. Table 9 below sets out the degree of saturation ranges that SIDRA uses when assessing the level of service. As can be seen the lower the degree of saturation the better the level of service.

Level of Service	Unsignalised Intersection	Roundabout
	Degree of Saturation	Degree of Saturation
A	< = 0.60	< = 0.60
В	0.60 - 0.70	0.60 – 0.70
С	0.70 – 0.80	0.70 – 0.85
D	0.80 - 0.90	0.85 – 0.95
E	0.90 – 1.00	0.95 – 1.00
F	>= 1.00	>= 1.00

Table 9 : Level of service

4.8 Intersection Turn Warrants

Warrants for turn treatments are set out in section 4.8 of the Austroads Guide to Road Design – Part 4A: Unsignalised and Signalised Intersections. These warrants apply to major road turn treatments for the basic, auxiliary lane and channelised layouts. Figure 4.9(b) of the Austroads guide has been used to assess if a turn treatment is required at each existing intersection.

An intersection performance assessment of all key junctions for the PM peak period has been undertaken for the two road network options highlighted in section 4.1. Refer to Figure 18 below for the key junction numbering configuration adopted for the assessment.

¹ Guide to Traffic Management, Part 3: Traffic Studies and Analysis, Austroads, 2009

Figure 18: Key Junction numbering configuration

Refer Appendix E for this assessment and Table 10, Table 11, Table 12 and Table 13 for a tabulated breakdown of the PM peak turn movements at the following key junctions within the ODP study area.

Major Road	Approach	Existing Intersection Make-up	Through Movement (Q _M)	Turn Movement (Q∟ or Q _R)	Treatment Required (Yes/No)	Turn Treatment	
Option 1 and Option 2							
Junction 1	South	Basic Left	1008	Q _L =4	No	Basic left	
		Basic Right	1008	Q _R =10	Yes	Channelised Right (Short)	
	Junction 1	North	Basic Left	1049	QL=14	Yes	Auxiliary left
			Basic Right	1049	Q _R =141	Yes	Channelised Right

Table 10: Turn Warrant Assessment at Junction 1

As can be seen, a channelised right turn short treatment is required on the north and south approaches of South Gippsland Highway. An auxiliary left turn treatment is required on the north approach.

Table 11: Turn Warran	t Assessment at Junction 2
-----------------------	----------------------------

Major Road	Approach	Existing Intersection Make-up	Through Movement (Q _M)	Turn Movement (Q∟ or Q _R)	Treatment Required (Yes/No)	Turn Treatment	
Option 1 and Option 2							
Junction 2	South	Basic Left	761	QL=26	Yes	Auxiliary left	
		Basic Right	761	Q _R =42	Yes	Channelised Right	
	JUNCTION 2	North	Basic Left	787	Q _L =196	Yes	Auxiliary left
			Basic Right	787	Q _R =78	Yes	Channelised Right

As can be seen, a channelised right turn short treatment and an auxiliary left turn treatment is required on both the north and south approaches of South Gippsland Highway.

Based on the traffic demand anticipated in the full development scenario, and the safety implication of four legged intersections, it is recommended that Junctions 3, 4 and 5 be built as a roundabout. Therefore a turn warrant assessment was not undertaken for these intersections.

Major Road	Existing Intersection Make-up	Through Movement (Q _M)	Turn Movement (Q∟ or Q _R)	Treatment Required (Yes/No)	Turn Treatment
Option 1					
Junction 6	-	138	QL=32	No	Basic left
	-	45	Q _R =12	No	Basic right
Option 2					
Junction 6	-	1	QL=0	No	Basic left
	-	1	Q _R =12	No	Basic right

Table 12: Turn Warrant Assessment at Junction 6

As can be seen, a basic left and basic right treatment is adequate for both approaches to Simons Lane.
Major Road	Existing Intersection Make-up	Through Movement (Q _M)	Through Turn Movement Movement (Q _M) (Q _L or Q _R)		Turn Treatment
Option 1					
	Basic Left	273	QL=90	Yes	Auxiliary left
Junction /a	Basic Right	232	Q _R =80	Yes	Channelised Right (Short)
Option 2					
lun ation 7h	Basic Left	273	QL=90	Yes	Auxiliary left
	Basic Right	232	Q _R =80	Yes	Channelised Right (Short)

As can be seen, a channelised right turn short treatment and an auxiliary left turn treatment is required on both the north and south approaches of Bass Highway.

4.8.1 Junction 1

Based on the intersection turn warrants, Junction 1 was modelled as an unsignalised intersection as follows for option 1 and 2:

Figure 19: Proposed intersection at Junction 1 – Option 1

Figure 20: Proposed intersection at Junction 1 – Option 2

A comparison of the queue length, average delay, degree of saturation and level of service of each approach of Junction 1 for Option 1 and Option 2 is shown in Table 14 below.

Approach	North		East		South		West	
	Option 1	Option 2						
PM Peak								
Queue Length (m)	24.1	24.1	92	92.5	1.7	1.7	383.3	420.4
Average Delay (sec)	6.3	6.3	1453.8	1486.5	2.9	0.3	970.4	1026.4
Degree of Saturation	0.614	0.614	1.000	1.000	0.576	0.576	1.965	2.033
Level of Service	В	В	F	F	В	В	F	F

Table 14: Comparison of results at Junction 1 Unsignalised intersection

The results show that the traffic volume at Junction 1 will not be acceptable for Option 1 and Option 2 in terms of queue lengths, average delays, Degree of Saturation and Level of Service for both the eastern and western approach to the intersection during the PM peak hour for an unsignalised intersection. Therefore we recommend that the intersection be upgraded to a roundabout.

The junction was then modelled as a roundabout as follows:

Figure 21: Proposed roundabout at Junction 1 – Option 1

Figure 22: Proposed roundabout at Junction 1 – Option 2

A comparison of the queue length, average delay, degree of saturation and level of service of each approach of Junction 1 for Option 1 and Option 2 is shown in Table 15 below.

Table 15: Comparison of results at Junction 1 with Roundabout

Approach	North		East		South		West	
	Option 1	Option 2						
PM Peak								
Queue Length (m)	94.8	89.3	7.0	6.7	75.4	69.8	28.4	28.2
Average Delay (sec)	8.3	8.3	26.2	25.6	8.4	8.3	20.8	19.6
Degree of Saturation	0.712	0.699	0.107	0.100	0.746	0.719	0.393	0.386
Level of Service	С	В	А	А	С	С	A	A

The results show that the traffic volume at Junction 1 will be acceptable for Option 1 and Option 2 in terms of queue lengths, average delays, Degree of Saturation and Level of Service for each approach to the intersection during the PM peak hour when upgraded to a roundabout.

Refer Appendix D for the full results of SIDRA analysis.

4.8.2 Junction 2

Based on the intersection turn warrants, Junction 2 was modelled as an unsignalised intersection as follows for option 1 and 2:

Figure 23: Proposed intersection at Junction 2 – Option 1

Figure 24: Proposed intersection at Junction 2 – Option 2

A comparison of the queue length, average delay, degree of saturation and level of service of each approach of Junction 2 for Option 1 and Option 2 is shown in Table 16 below.

Approach	North		East		South		West	
	Option 1	Option 2						
PM Peak								
Queue Length (m)	5.9	111.4	1081.3	909.8	3.0	109.8	386.6	917.7
Average Delay (sec)	5.0	16.4	3075.4	2842.7	3.6	20.3	941.2	2564.5
Degree of Saturation	0.446	0.601	4.141	3.860	0.429	0.540	1.854	3.620
Level of Service	A	В	F	F	A	A	F	F

Table 16: Comparison of results at Junction 2 with Unsignalised intersection

The results show that the traffic volume at Junction 2 will not be acceptable for Option 1 and Option 2 in terms of queue lengths, average delays, Degree of Saturation and Level of Service for both the eastern and western approach to the intersection during the PM peak hour for an unsignalised intersection. Therefore we recommend that the intersection be upgraded to a roundabout.

The junction was then modelled as a roundabout as follows for option 1 and 2:

Figure 26: Proposed roundabout at Junction 2 – Option 2

A comparison of the queue length, average delay, degree of saturation and level of service of each approach of Junction 2 for Option 1 and Option 2 is shown in Table 17 below.

Table 17: Comparison of results at Junction 2 with Roundabout

Approach	North		East		South		West			
	Option 1	Option 2								
PM Peak										
Queue Length (m)	56.0	65.9	48.5	53.5	74.2	63.7	25.1	50.9		
Average Delay (sec)	7.7	8.6	24.6	31.0	10.1	8.8	18.0	27.5		
Degree of Saturation	0.597	0.673	0.574	0.609	0.691	0.660	0.370	0.593		
Level of Service	А	В	А	В	В	В	A	А		

The results show that the traffic volume at Junction 2 will be acceptable for Option 1 and Option 2 in terms of queue lengths, average delays, Degree of Saturation and Level of Service for each approach to the intersection during the PM peak hour when upgraded to a roundabout.

Refer Appendix D for the full results of SIDRA analysis.

4.8.3 Junction 3

Based on the traffic demand anticipated in the full development scenario, and the safety implication of four legged intersections, it is recommended that Junction 3 be built as a roundabout. This junction was modelled as a roundabout as follows:

Figure 27: Proposed roundabout at Junction 3

A comparison of the queue length, average delay, degree of saturation and level of service of each approach of Junction 3 for Option 1 and Option 2 is shown in Table 18 below.

Table	18:	Com	parison	of	results	at	Junction	3
								_

Approach	North		East		South		West			
	Option 1	Option 2								
PM Peak										
Queue Length (m)	56.3	70.2	3.4	3.9	53.8	61.0	8.7	10		
Average Delay (sec)	7.1	7.1	17.9	19.8	7.8	8.2	14.1	14.6		
Degree of Saturation	0.584	0.646	0.065	0.073	0.610	0.661	0.154	0.172		
Level of Service	А	В	А	А	В	В	А	A		

The results show that the traffic volume at Junction 3 will be acceptable for Option 1 and Option 2 in terms of queue lengths, average delays, Degree of Saturation and Level of Service for each approach to the intersection during the PM peak hour.

Refer Appendix D for the full results of SIDRA analysis.

4.8.4 Junction 4

Based on the traffic demand anticipated in the full development scenario, and the safety implication of four legged intersections, it is recommended that Junction 4 also be built as a roundabout. This junction was modelled as a roundabout as follows:

Figure 28: Proposed roundabout at Junction 4

A comparison of the queue length, average delay, degree of saturation and level of service of each approach of Junction 4 for Option 1 and Option 2 is shown in Table 19 below.

Approach	North		East		South		West		
	Option 1	Option 2							
PM Peak									
Queue Length (m)	46.4	49.1	3.0	3.0	32.7	27.5	29.2	28.3	
Average Delay (sec)	9.3	9.4	14.9	15.3	9.2	9.4	11.0	10.6	
Degree of Saturation	0.571	0.586	0.056	0.056	0.499	0.445	0.465	0.454	
Level of Service	А	A	A	А	А	A	A	A	

Table 19: Comparison of results at Junction 4

The results show that the traffic volume at Junction 4 will be acceptable for Option 1 and Option 2 in terms of queue lengths, average delays, Degree of Saturation and Level of Service for each approach to the intersection during the PM peak hour.

Refer Appendix D for the full results of SIDRA analysis.

4.8.5 Junction 5

Based on the traffic demand anticipated in the full development scenario, and the safety implication of four legged intersections, it is recommended that Junction 5 be built as a roundabout. This junction was modelled as a roundabout as follows:

Figure 29: Proposed roundabout at Junction 5

A comparison of the queue length, average delay, degree of saturation and level of service of each approach of Junction 5 for Option 1 and Option 2 is shown in Table 20 below.

Approach	North		East		South		West		
	Option 1	Option 2							
PM Peak									
Queue Length (m)	23.6	21.6	6.3	6.0	17.4	16.9	9.6	4.7	
Average Delay (sec)	8.4	8.0	13.3	13.3	9.5	9.3	11.4	11.9	
Degree of Saturation	0.380	0.358	0.128	0.122	0.311	0.300	0.188	0.097	
Level of Service	A	A	А	A	A	A	A	A	

Table 20: Comparison of results at Junction 5

The results show that the traffic volume at Junction 5 will be acceptable for Option 1 and Option 2 in terms of queue lengths, average delays, Degree of Saturation and Level of Service for each approach to the intersection during the PM peak hour.

Refer Appendix D for the full results of SIDRA analysis.

4.8.6 Junction 6

Based on the intersection turn warrants, Junction 6 was modelled as an unsignalised intersection as follows:

Figure 30: Proposed intersection at Junction 6

A comparison of the queue length, average delay, degree of saturation and level of service of each approach of Junction 6 for Option 1 and Option 2 is shown in Table 21 below.

Table 21: Comparison of results at Junction 6

Approach	No	rth	Ea	st	West		
	Option 1	Option 2	Option 1	Option 2	Option 1	Option 2	
PM Peak							
Queue Length (m)	0.6	0.3	1.9	0.3	0.0	0.0	
Average Delay (sec)	12.8	11.7	2.8	9.4	1.8	0.8	
Degree of Saturation	0.019	0.010	0.037	0.010	0.099	0.001	
Level of Service	A	A	A	A	A	A	

The results show that the traffic volume at Junction 6 will be acceptable for Option 1 and Option 2 in terms of queue lengths, average delays, Degree of Saturation and Level of Service for each approach to the intersection during the PM peak hour.

Refer Appendix D for the full results of SIDRA analysis.

4.8.7 Junction 7

Based on the intersection turn warrants, Junction 7 was modelled as an unsignalised intersection as follows:

Figure 31: Proposed intersection at Junction 7

A comparison of the queue length, average delay, degree of saturation and level of service of each approach of Junction 7 for Option 1 and Option 2 is shown in Table 22 below.

Approach	No	rth	Ea	ist	South					
	Option 1	Option 2	Option 1	Option 2	Option 1	Option 2				
PM Peak										
Queue Length (m)	0	0	3.7	3.7	3.1	3.1				
Average Delay (sec)	2.5	2.5	17.9	17.9	3.0	3.0				
Degree of Saturation	0.157	0.157	0.116	0.116	0.133	0.133				
Level of Service	A	A	A	A	A	A				

 Table 22: Comparison of results at Junction 7

The results show that the traffic volume at Junction 7 will be acceptable for Option 1 and Option 2 in terms of queue lengths, average delays, Degree of Saturation and Level of Service for each approach to the intersection during the PM peak hour.

Refer Appendix D for the full results of SIDRA analysis.

5 INTERNAL ROAD NETWORK REVIEW

5.1 Road Hierarchy

From the generated traffic volumes for the ODP study area, we propose the following indicative road network for the ODP area, refer Figure 32: Indicative road network.

A detailed road hierarchy should be designed at a later stage once the land is rezoned.

Figure 32: Indicative road network

5.2 Road Cross Sections

All road cross sections are to be in accordance with the Infrastructure Design Manual. Refer to this manual Table 2, page 36 for urban street characteristics and Table 6, page 45 for rural road characteristics.

6 INTEGRATED TRANSPORT REVIEW

6.1 **Public Transport**

6.1.1 Bus

Additional public bus services should be provided within the internal road network to connect the future residents and commercial / retail developments within the ODP study area to the Leongatha town centre and surroundings. Since the ODP study area is large, the bus services should be provided in two stages as follows:

- Stage 1 Provide a bus route that services the ODP area east of the South Gippsland Highway. This should include bus stops along Parr Street and Boags Road.
- Stage 2 Provide a bus route that services the ODP area west of the South Gippsland Highway. This should include bus stops along Greenwood Parade and Simons Lane. This service can also focus on providing connectivity to the Leongatha Hospital

These services would likely be in the form of a new route as the existing bus services do not operate within the ODP area.

6.2 Pedestrian and Bicycle Connectivity

6.2.1 Pedestrians

The Leongatha Local Structure Plan proposes the construction of a pedestrian link connecting Parr Street to South Gippsland Highway and the Great Southern Rail Trail. This connection will also service the commercial / retail developments on South Gippsland Highway.

Any new footpaths and pedestrian facilities should comply with the Disability Discrimination Act.

6.2.2 Bicycles

The Leongatha Local Structure Plan identifies the provision of a cycle link connecting Parr Street to South Gippsland Highway and the Great Southern Rail Trail. This connection will also service the commercial / retail developments on South Gippsland Highway.

These cycle paths should be provided to connect residents with the open space and natural features along the northern boundary of the development.

The existing crossing of the Great Southern Rail Trail adjacent to Junction 6 will need to be upgraded. The entry and exit terminals will need to be designed in accordance with Austroads Guidelines. Refer to Appendix F for Austroads entry and exit terminal requirements.

Further, if Council adopts Option 2 and proceeds with the extension of Parr Street, it is recommended that where the new road crosses the Great Southern Rail Trail, the same entry and exit details as per the Austroads Guidelines be implemented.

7 SUMMARY

Based on the site visit and this Transport and Traffic Impact Assessment, we have determined that the development of the ODP study area in South Leongatha will not have an adverse impact on the operation of the existing road network adjacent to the site.

In summary this Transport and Traffic Impact Assessment has identified the following outcomes:

- The residential development within the ODP study area will generate approximately 1,100 peak hour vehicle trips.
- The bulky goods and commercial developments within the ODP study area will generate approximately 1,060 peak hour vehicle trips.
- In order to estimate the future year external traffic volumes, a 2% annual growth rate compounded has been added to the existing traffic volumes.
- The directional split of traffic entering and exiting the development area is as follows:
 - o Bulky Goods 50% In / 50% Out
 - Retail / Commercial 50% In / 50% Out
 - Low Density Residential 51% In / 49% Out
 - Residential 58% In / 42% Out
- An assumption has been made that the development will generate heavy vehicle movements equivalent to 5% of the proposed total daily vehicle trip on the Highway and 1% for local roads. This assumption was added to the SIDRA assessment.
- Turn warrant assessments for Junction 1 indicates that a channelised right turn short treatment is required on both approaches of South Gippsland Highway and an auxiliary left turn treatment is required on the north approach.
- Turn warrant assessments for Junction 2 indicates that a channelised right turn short treatment and an auxiliary left turn treatment is required on both approaches of South Gippsland Highway.
- Based on the traffic demand anticipated in the full development scenario, and the safety implication of four legged intersections, it is recommended that Junctions 3, 4 and 5 be built as a roundabout. Therefore a turn warrant assessment was not undertaken for these intersections.
- Turn warrant assessments for Junction 6 indicates that a basic left and basic right turn is adequate on both approaches to Simons Lane.
- Turn warrant assessments for Junction 7 indicates that an auxiliary left and channelised right turn short treatments are required on both approaches to Bass Highway.
- SIDRA assessment of Junction 1 as an unsignalised intersection shows unacceptable level of service. When upgraded to a roundabout, Junction 1 shows that the traffic volumes generated from the future development of the ODP area will not have an adverse impact on the current operating conditions
- SIDRA assessment of Junction 2 as an unsignalised intersection shows unacceptable level of service. When upgraded to a roundabout, Junction 2 shows that the traffic volumes generated from the future development of the ODP area will not have an adverse impact on the current operating conditions.

- SIDRA assessment of Junction 3, Junction 4 and Junction 5 as a roundabout shows that the traffic volumes generated from the future development of the ODP area will not have an adverse impact on the operating conditions of these roundabouts.
- SIDRA assessment of Junction 6 as an unsignalised intersection shows acceptable level of service.
- SIDRA assessment of Junction 7 as an unsignalised intersection shows acceptable level of service.
- All junctions should be designed in accordance with the Austroads Guide to Road Design 2009 Part 4: Intersections and Crossings, and Part 4B: Roundabouts.
- Additional public bus services should be provided to connect the eastern and western future residential developments within the ODP area to the Leongatha town centre.
- A future pedestrian link connecting Parr Street to South Gippsland Highway and the Great Southern Rail Trail should be constructed. This connection will also service the commercial / retail developments on South Gippsland Highway.
- A future cycle link connecting Parr Street to South Gippsland Highway and the Great Southern Rail Trail should be constructed. This connection will also service the commercial / retail developments on South Gippsland Highway.
- The bicycle network should be upgraded by Council in the near future in accordance with the Leongatha Local Level Structure Plan recommendations.

8 **RECOMMENDATIONS**

The following recommendations are made based on an assessment of the key intersections identified within the ODP study area. Our transport and traffic engineering recommendations to support the proposed development are as follows:

- The assessment shows that existing Junctions 1, 2 and 3 require upgrading to a roundabout treatment for both options 1 and 2.
- The assessment shows that the proposed Junctions 3 and 4 operate adequately as roundabouts for both options 1 and 2.
- The assessment shows that existing Junctions 5 operates adequately when upgraded to a roundabout for both options 1 and 2.
- The assessment shows that Junction 6 operates adequately as a unsignalised T-intersection for both options 1 and 2.
- The assessment shows that Junction 7 operates adequately as a unsignalised Tintersection for both options 1 and 2.
- The traffic assessment supports the retention of Simons Lane if upgraded to include an auxiliary left turn and channelised right turn lane treatment. It is also strongly recommended that the new intersection arrangement be redesigned to improve the safe intersection sight distance to achieve compliance with Austroads guidelines.
- If the current intersection configuration at Bass Highway / Simons Lane cannot be modified, then it is recommended that Simons Lane be truncated at Bass Highway as it poses a safety risk due to restricted sight distances.
- If Simons Lane is truncated then it is recommended that the Parr Street extension be constructed when Young Street and it's intersections with South Gippsland Highway and Bass Highway reach capacity and/or when the future development to the west of the Great Southern Rail Trail commences.
- The existing cycle crossing and entry and exit terminals at the Great Southern Rail Trail adjacent to Junction 6 should be upgraded to comply with Austroads guidelines.
- If Council adopts Option 2 and proceeds with the extension of Parr Street, it is recommended that where the new road crosses the Great Southern Rail Trail, the same entry and exit details as per the Austroads Guidelines be implemented.
- Future pedestrian and cycle links connecting Parr Street to South Gippsland Highway and the Great Southern Rail Trail should be constructed.
- All new footpaths and pedestrian facilities should comply with the Disability Discrimination Act.

Therefore, there are no transport and traffic reasons as to why the overall development of the ODP area cannot proceed, subject to the appropriate conditions.

APPENDIX A – LEONGATHA LOCAL LEVEL STRUCTURE PLAN

APPENDIX B – TRIP GENERATION RATE CALCULATIONS

R1Z	and LDRZ Trip Gen	eration R	Calcs	(Average Weekday)				
	Location							
4)	BLAIR CRESCENT		(11/02/10	- 25/02/10)				
	No. Lots =	26	No. TRIPS	% HV =	1.4%			
	Day of Week	Daily	AM	PM				
	Fri	195	16	19		Daily Trip/Lot = 7		
	Mon	203	18	22		AM PHF = 9%		
	Tue	169	17	18		PM PHF = 10%		
	Wed	170	13	8				
	Thu	210	20	21				
	Fri	182	19	18		ZONE : R1Z		
	Mon	214	16	23		L		
	Tue	180	19	19				
	Wed	226	19	25				
	Ave	194	17	19				
	Ave Excl. HVs	192	17	19				
	BOAGS RD / TARWIN RIDGE BLVD			(07/10/10 - 2	21/10/10)			
;)								
)	No. Lots =	17	No. TRIPS	% HV =	8.6%			
)	No. Lots = Day of Week	17 Daily	No. TRIPS AM	% HV = PM	8.6%			
)	No. Lots = Day of Week Fri	17 Daily 182	No. TRIPS AM 15	% HV = PM 21	8.6%	Daily Trip/Lot = 10		
•)	No. Lots = Day of Week Fri Mon	17 Daily 182 174	No. TRIPS AM 15 13	% HV = PM 21 19	8.6%	Daily Trip/Lot = 10 AM PHF = 9%		
)	No. Lots = Day of Week Fri Mon Tue	17 Daily 182 174 205	No. TRIPS AM 15 13 13	% HV = PM 21 19 22	8.6%	Daily Trip/Lot = 10 AM PHF = 9% PM PHF = 11%		
)	No. Lots = Day of Week Fri Mon Tue Wed	17 Daily 182 174 205 226	No. TRIPS AM 15 13 13 22	% HV = PM 21 19 22 32	8.6%	Daily Trip/Lot = 10 AM PHF = 9% PM PHF = 11%		
)	No. Lots = Day of Week Fri Mon Tue Wed Thu	17 Daily 182 174 205 226 183	No. TRIPS AM 15 13 13 22 19	% HV = PM 21 19 22 32 18	8.6%	Daily Trip/Lot = 10 AM PHF = 9% PM PHF = 11%		
)	No. Lots = Day of Week Fri Mon Tue Wed Thu Fri	17 Daily 182 174 205 226 183 182	No. TRIPS AM 15 13 13 22 19 19	% HV = PM 21 19 22 32 18 21	8.6%	Daily Trip/Lot = 10 AM PHF = 9% PM PHF = 11% ZONE : LDRZ		
)	No. Lots = Day of Week Fri Mon Tue Wed Thu Fri Mon	17 Daily 182 174 205 226 183 182 168	No. TRIPS AM 15 13 13 22 19 19 19	% HV = PM 21 19 22 32 18 21 16	8.6%	Daily Trip/Lot = 10 AM PHF = 9% PM PHF = 11% ZONE : LDRZ		
)	No. Lots = Day of Week Fri Mon Tue Wed Thu Fri Mon Tue	17 Daily 182 174 205 226 183 182 168 208	No. TRIPS AM 15 13 13 22 19 19 19 15 16	% HV = PM 21 19 22 32 18 21 16 20	8.6%	Daily Trip/Lot = 10 AM PHF = 9% PM PHF = 11% ZONE : LDRZ		
;)	No. Lots = Day of Week Fri Mon Tue Wed Thu Fri Mon Tue Wed	17 Daily 182 174 205 226 183 182 168 208 194	No. TRIPS AM 15 13 13 22 19 19 19 15 16 17	% HV = PM 21 19 22 32 18 21 16 20 19	8.6%	Daily Trip/Lot = 10 AM PHF = 9% PM PHF = 11% ZONE : LDRZ		
)	No. Lots = Day of Week Fri Mon Tue Wed Thu Fri Mon Tue Wed Average	17 Daily 182 174 205 226 183 182 168 208 194 191	No. TRIPS AM 15 13 13 22 19 19 19 15 16 17 17	% HV = PM 21 19 22 32 18 21 16 20 19 21	8.6%	Daily Trip/Lot = 10 AM PHF = 9% PM PHF = 11% ZONE : LDRZ		

APPENDIX C – ASSIGNMENT TRIPS BREAKDOWN

South Leongatha Outline Development Plan Study | Revision No. 3 | 11 January 2011

South Leongatha Outline Development Plan Study | Revision No. 3 | 11 January 2011

South Gippsland Hwy South

MOVEMENT SUMMARY

Sth Leongatha, Option 1, Junction 1 PM Peak Stop (Two-Way)

Moven	nent Per	formance - '	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	South Gip	psland Hwy S	South								
1	L	4	0.0	0.602	10.1	LOS B	0.0	0.0	0.00	1.74	57.1
2	Т	1085	4.8	0.576	2.6	LOS A	0.0	0.0	0.00	0.23	71.0
3	R	12	9.1	0.058	27.5	LOS A	0.2	1.7	0.86	0.96	39.4
Approa	ch	1101	4.8	0.576	2.9	LOS B	0.2	1.7	0.01	0.24	70.3
East: A	thur St E	ast	~ ~	4	4 4 5 9 9	1005	40.0		4.00	4.00	
4	L	1	0.0	1.053	1453.8	LOSF	12.6	92.0	1.00	1.60	1.6
5	I	18	5.9	0.994	1453.3	LOSE	12.6	92.0	1.00	1.48	1.5
6	R	21	5.0	1.003	1454.2	LOS F	12.6	92.0	1.00	1.47	1.6
Approach 40		40	5.3	1.000	1453.8	LOS F	12.6	92.0	1.00	1.48	1.6
North: S	South Gip	psland Hwy N	lorth								
7	L	16	6.7	0.014	10.0	LOS A	0.1	0.4	0.06	0.63	57.1
8	Т	1132	4.7	0.598	2.6	LOS A	0.0	0.0	0.00	0.23	71.0
9	R	156	4.7	0.613	33.1	LOS B	3.3	24.1	0.92	1.09	35.6
Approa	ch	1303	4.8	0.614	6.3	LOS B	3.3	24.1	0.11	0.33	63.3
West: C	Greenwoo	d Pde S West									
10	L	142	5.2	1.974	970.4	LOS F	52.5	383.3	1.00	3.52	2.4
11	Т	1	0.0	1.053	969.4	LOS F	52.5	383.3	1.00	3.19	2.2
12	R	4	0.0	2.105	970.0	LOS F	52.5	383.3	1.00	3.14	2.4
Approa	ch	147	5.0	1.965	970.4	LOS F	52.5	383.3	1.00	3.51	2.4
All Vehi	cles	2592	4.8	1.965	82.0	NA	52.5	383.3	0.13	0.49	19.9

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement.

Processed: Tuesday, 21 December 2010 10:20:43 AM SIDRA INTERSECTION 5.0.4.1498

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004603 - South Leongatha ODP - Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Junction 1.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

South Gippsland Hwy South

MOVEMENT SUMMARY

Sth Leongatha, Option 2, Junction 1 PM Peak Stop (Two-Way)

Movem	nent Pe	erformance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	South G	ippsland Hwy	South								
1	L	4	0.0	0.602	8.2	LOS B	0.0	0.0	0.00	1.09	49.0
2	т	1085	4.8	0.576	0.0	LOS A	0.0	0.0	0.00	0.00	63.5
3	R	12	9.1	0.062	26.6	LOS A	0.2	1.7	0.87	0.96	34.7
Approac	ch	1101	4.8	0.576	0.3	LOS B	0.2	1.7	0.01	0.01	63.0
East: Ar	thur St	East									
4	L	1	0.0	1.053	1485.9	LOS F	12.6	92.5	1.00	1.56	1.4
5	Т	18	5.9	0.994	1486.0	LOS E	12.6	92.5	1.00	1.49	1.4
6	R	21	5.0	1.003	1487.0	LOS F	12.6	92.5	1.00	1.47	1.6
Approac	ch	40	5.3	1.000	1486.5	LOS F	12.6	92.5	1.00	1.48	1.5
North: S	South G	ippsland Hwy I	North								
7	L	16	6.7	0.607	10.3	LOS B	0.0	0.0	0.00	1.76	57.1
8	т	1132	4.7	0.607	2.6	LOS B	0.0	0.0	0.00	0.22	71.0
9	R	156	4.7	0.613	33.1	LOS B	3.3	24.1	0.92	1.09	35.6
Approac	ch	1303	4.8	0.614	6.3	LOS B	3.3	24.1	0.11	0.35	63.3
West: G	reenwo	od Pde S Wes	st								
10	L	154	4.8	2.022	1026.5	LOS F	57.8	420.4	1.00	3.69	2.3
11	Т	1	0.0	1.053	1025.0	LOS F	57.8	420.4	1.00	3.33	2.0
12	R	4	0.0	2.105	1025.1	LOS F	57.8	420.4	1.00	3.28	2.1
Approad	ch	159	4.6	2.033	1026.4	LOS F	57.8	420.4	1.00	3.68	2.3
All Vehic	cles	2603	4.8	2.033	88.8	NA	57.8	420.4	0.14	0.43	19.0

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement.

Processed: Tuesday, 11 January 2011 3:10:54 PM SIDRA INTERSECTION 5.0.2.1437 Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: I:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Revised (2011 Jan)\Junction 1.sip

8000617, SMEC AUSTRALIA PTY LTD, SINGLE

L

MOVEMENT SUMMARY

wovem	ent Pe	rtormance - v	enicies								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	outh Gi	ppsland Hwy So	outh								
1	L	4	0.0	0.007	7.5	LOS A	0.0	0.2	0.39	0.50	48.9
2	Т	1085	4.8	0.746	8.3	LOS C	10.3	75.4	0.71	0.60	49.6
3	R	12	9.1	0.724	13.3	LOS C	10.3	75.4	0.71	0.75	46.2
Approac	h	1101	4.8	0.746	8.4	LOS C	10.3	75.4	0.71	0.61	49.5
East: Art	hur St E	ast									
4	L	1	0.0	0.105	22.9	LOS A	1.0	7.0	0.97	0.87	36.7
5	Т	18	5.9	0.107	22.0	LOS A	1.0	7.0	0.97	0.87	36.8
6	R	21	5.0	0.107	30.0	LOS A	1.0	7.0	0.97	0.89	37.1
Approac	h	40	5.3	0.107	26.2	LOS A	1.0	7.0	0.97	0.88	37.0
North: S	outh Gip	opsland Hwy No	orth								
7	L	16	6.7	0.025	8.8	LOS A	0.1	0.7	0.11	0.56	58.6
8	Т	1132	4.7	0.712	7.6	LOS C	13.0	94.8	0.22	0.47	59.2
9	R	156	4.7	0.711	13.5	LOS C	13.0	94.8	0.22	0.80	53.0
Approac	h	1303	4.8	0.712	8.3	LOS C	13.0	94.8	0.22	0.51	58.3
West: G	reenwoo	od Pde S West									
10	L	142	5.2	0.393	20.7	LOS A	3.9	28.4	1.00	1.02	41.2
11	Т	1	0.0	0.351	18.2	LOS A	3.9	28.4	1.00	1.02	39.3
12	R	4	0.0	0.383	24.5	LOS A	3.9	28.4	1.00	1.02	37.4
Approac	h	147	5.0	0.393	20.8	LOS A	3.9	28.4	1.00	1.02	41.1
All Vehic	les	2592	4.8	0.746	9.3	LOS A	13.0	94.8	0.48	0.58	52.4

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: Wednesday, 22 December 2010 11:42:18 AM Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.4.1498 www.sidrasolutions.com Project: I:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Junction 1.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

MOVEMENT SUMMARY

Moven	nent Pe	rformance	- Vehicles								
Marcin	Τ	Demand	1117	Deg.	Average	Level of	95% Back of	of Queue	Prop.	Effective	Average
	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Onuther		veh/h	%	V/C	sec	_	veh	m	_	per veh	km/h
South: 3	South G	ippsiand Hwy	South								
1	L	4	0.0	0.006	7.1	LOS A	0.0	0.2	0.38	0.49	49.1
2	Т	1085	4.8	0.719	8.2	LOS C	9.6	69.8	0.67	0.59	49.8
3	R	12	9.1	0.724	13.1	LOS C	9.6	69.8	0.67	0.75	46.3
Approa	ch	1101	4.8	0.719	8.3	LOS C	9.6	69.8	0.67	0.59	49.8
East: Ar	thur St	East									
4	L	1	0.0	0.096	21.9	LOS A	0.9	6.7	0.97	0.86	37.2
5	Т	18	5.9	0.100	21.3	LOS A	0.9	6.7	0.97	0.86	37.3
6	R	21	5.0	0.100	29.4	LOS A	0.9	6.7	0.97	0.87	37.5
Approa	ch	40	5.3	0.100	25.6	LOS A	0.9	6.7	0.97	0.86	37.4
North: S	South Gi	ppsland Hwy	North								
7	L	16	6.7	0.024	8.6	LOS A	0.1	0.7	0.11	0.55	58.9
8	Т	1132	4.7	0.699	7.6	LOS B	12.3	89.3	0.21	0.47	59.2
9	R	156	4.7	0.699	13.5	LOS B	12.3	89.3	0.21	0.80	52.9
Approa	ch	1303	4.8	0.699	8.3	LOS B	12.3	89.3	0.21	0.51	58.4
West: G	Greenwo	od Pde S We	st								
10	L	154	4.8	0.386	19.5	LOS A	3.9	28.2	1.00	0.99	42.1
11	т	1	0.0	0.351	17.2	LOS A	3.9	28.2	1.00	0.99	40.2
12	R	4	0.0	0.383	23.4	LOS A	3.9	28.2	1.00	0.99	38.2
Approa	ch	159	4.6	0.386	19.6	LOS A	3.9	28.2	1.00	0.99	42.0
All Vehi	cles	2603	4.8	0.719	9.3	LOS A	12.3	89.3	0.46	0.58	52.5

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections. Roundabout Capacity Model: SIDRA Standard.

Processed: Tuesday, 11 January 2011 3:08:14 PM SIDRA INTERSECTION 5.0.2.1437 Project: I:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Revised (2011 Jan)\Junction 1.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

South Gippsland Hwy South

MOVEMENT SUMMARY

Sth Leongatha, Option 1, Junction 2 PM Peak Stop (Two-Way)

Moven	nent Per	formance -	Vehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: S	South Gip	psland Hwy	South								
1	L	28	3.7	0.025	10.1	LOS A	0.1	0.8	0.18	0.61	56.3
2	Т	812	4.8	0.429	2.6	LOS A	0.0	0.0	0.00	0.23	71.0
3	R	45	2.3	0.098	16.9	LOS A	0.4	3.0	0.70	0.92	48.4
Approa	ch	885	4.6	0.429	3.6	LOS A	0.4	3.0	0.04	0.27	68.8
East: Pa	arr St Eas	st									
4	L	57	1.9	4.060	3075.5	LOS F	152.6	1081.3	1.00	5.30	0.8
5	Т	77	1.4	4.044	3074.7	LOS F	152.6	1081.3	1.00	4.45	0.7
6	R	162	1.3	4.157	3075.6	LOS F	152.6	1081.3	1.00	4.31	0.8
Approa	ch	296	1.4	4.141	3075.4	LOS F	152.6	1081.3	1.00	4.54	0.8
North: S	South Gip	psland Hwy I	North								
7	L	207	1.0	0.176	10.0	LOS A	0.8	5.9	0.14	0.62	56.5
8	Т	843	4.7	0.446	2.6	LOS A	0.0	0.0	0.00	0.23	71.0
9	R	82	1.3	0.168	16.6	LOS A	0.7	5.2	0.70	0.92	48.7
Approa	ch	1133	3.8	0.446	5.0	LOS A	0.8	5.9	0.08	0.35	65.7
West: F	arr St We	est									
10	L	92	1.1	1.869	941.2	LOS F	54.3	386.6	1.00	4.12	2.5
11	Т	23	4.5	1.930	940.6	LOS F	54.3	386.6	1.00	3.41	2.2
12	R	44	2.4	1.842	941.4	LOS F	54.3	386.6	1.00	3.31	2.5
Approa	ch	159	2.0	1.854	941.2	LOS F	54.3	386.6	1.00	3.79	2.5
All Vehi	cles	2473	3.7	4.141	432.0	NA	152.6	1081.3	0.23	1.04	4.8

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement.

Processed: Tuesday, 21 December 2010 10:35:43 AM C SIDRA INTERSECTION 5.0.4.1498

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: 1:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Junction 2.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

South Gippsland Hwy South

Sth Leongatha, Option 2, Junction 2 PM Peak Stop (Two-Way)

Movem	Movement Performance - Vehicles Demand Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: S	South Gi	ppsland Hwy S	South							· · · ·				
1	L	66	1.6	0.036	8.2	LOS A	0.0	0.0	0.00	0.67	49.0			
2	Т	812	4.8	0.540	20.8	LOS A	15.1	109.8	1.00	0.00	35.8			
3	R	45	2.3	0.539	29.3	LOS A	15.1	109.8	1.00	1.25	35.6			
Approac	h	923	4.4	0.540	20.3	LOS A	15.1	109.8	0.93	0.11	36.5			
East: Pa	arr St Ea	st												
4	L	57	1.9	3.789	2842.8	LOS F	128.1	909.8	1.00	4.88	0.8			
5	Т	33	3.2	4.079	2842.7	LOS F	128.1	909.8	1.00	4.09	0.8			
6	R	162	1.3	3.860	2842.7	LOS F	128.1	909.8	1.00	3.99	0.8			
Approad	h	252	1.7	3.860	2842.7	LOS F	128.1	909.8	1.00	4.21	0.8			
North: S	outh Gip	opsland Hwy N	lorth											
7	L	207	1.0	0.112	8.2	LOS A	0.0	0.0	0.00	0.67	49.0			
8	Т	843	4.7	0.601	17.4	LOS B	15.3	111.4	1.00	0.00	37.7			
9	R	82	1.3	0.599	25.9	LOS A	15.3	111.4	1.00	1.29	37.6			
Approac	h	1133	3.8	0.601	16.4	LOS B	15.3	111.4	0.82	0.22	39.4			
West: P	arr St W	est												
10	L	92	1.1	3.663	2564.6	LOS F	129.8	917.7	1.00	5.20	0.8			
11	Т	26	4.0	3.759	2564.6	LOS F	129.8	917.7	1.00	4.18	0.8			
12	R	144	0.7	3.605	2564.5	LOS F	129.8	917.7	1.00	4.15	0.8			
Approac	h	262	1.2	3.620	2564.5	LOS F	129.8	917.7	1.00	4.52	0.8			
All Vehic	cles	2569	3.6	3.860	554.4	NA	129.8	917.7	0.89	1.01	3.7			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement.

Processed: Tuesday, 21 December 2010 10:35:51 AM SIDRA INTERSECTION 5.0.4.1498 Project: I:\Projects\3004603 - South Leongatha ODP - Traffic Study\En

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: 1:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Junction 2.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Movem	Movement Performance - Vehicles Demand Deg Average Level of 95% Back of Queue Pron Effective Average												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: S	South Gip	psland Hwy S	South										
1	L	28	3.7	0.052	9.6	LOS A	0.3	1.8	0.55	0.63	47.3		
2	Т	812	4.8	0.691	9.9	LOS B	10.2	74.2	0.84	0.76	46.2		
3	R	45	2.3	0.686	14.7	LOS B	10.2	74.2	0.84	0.83	44.3		
Approac	h	885	4.6	0.691	10.1	LOS B	10.2	74.2	0.83	0.76	46.1		
East: Pa	arr St Eas	st											
4	L	57	1.9	0.574	22.5	LOS A	6.8	48.5	1.00	1.14	36.9		
5	Т	77	1.4	0.573	21.9	LOS A	6.8	48.5	1.00	1.14	36.9		
6	R	162	1.3	0.573	26.7	LOS A	6.8	48.5	1.00	1.14	35.5		
Approach		296	1.4	0.574	24.6	LOS A	6.8	48.5	1.00	1.14	36.1		
North: S	outh Gip	psland Hwy N	lorth										
7	L	207	1.0	0.331	8.2	LOS A	1.7	11.7	0.38	0.59	48.1		
8	Т	843	4.7	0.598	7.1	LOS A	7.7	56.0	0.50	0.52	48.2		
9	R	82	1.3	0.599	11.9	LOS A	7.7	56.0	0.50	0.71	45.9		
Approac	h	1133	3.8	0.597	7.7	LOS A	7.7	56.0	0.48	0.55	48.0		
West: P	arr St We	est											
10	L	92	1.1	0.371	16.9	LOS A	3.5	25.1	1.00	0.98	40.8		
11	Т	23	4.5	0.368	16.4	LOS A	3.5	25.1	1.00	0.98	40.8		
12	R	44	2.4	0.372	21.2	LOS A	3.5	25.1	1.00	0.98	39.0		
Approac	h	159	2.0	0.370	18.0	LOS A	3.5	25.1	1.00	0.98	40.3		
All Vehic	cles	2473	3.7	0.691	11.3	LOS B	10.2	74.2	0.70	0.72	45.0		

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: Thursday, 23 December 2010 10:55:39 AM SIDRA INTERSECTION 5.0.4.1498 Project: I:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Junction 2.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Movem	Movement Performance - Vehicles Demand Deg. Average Level of 95% Back of Queue <u>Prop. Effective Average</u>													
May ID	Turn	Demand		Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average			
	Turn	Flow	ΗV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
Cauthy C		veh/h	%	V/C	sec		veh	m		per veh	km/h			
South: S	outh Gip	opsiand Hwy S	ouin											
1	L	66	1.6	0.117	9.3	LOSA	0.6	4.1	0.52	0.64	47.4			
2	Т	812	4.8	0.660	8.8	LOS B	8.8	63.7	0.78	0.69	46.6			
3	R	45	2.3	0.656	13.6	LOS B	8.8	63.7	0.78	0.78	45.2			
Approac	h	923	4.4	0.660	9.0	LOS B	8.8	63.7	0.76	0.69	46.6			
East: Pa	arr St Eas	st												
4	L	57	1.9	0.611	28.4	LOS B	7.5	53.5	1.00	1.17	33.5			
5	Т	33	3.2	0.604	27.7	LOS B	7.5	53.5	1.00	1.17	33.5			
6	R	162	1.3	0.609	32.5	LOS B	7.5	53.5	1.00	1.17	32.4			
Approac	h	252	1.7	0.609	31.0	LOS B	7.5	53.5	1.00	1.17	32.8			
North: S	outh Gip	psland Hwy N	orth											
7	L	207	1.0	0.356	9.2	LOS A	1.9	13.6	0.53	0.65	47.4			
8	Т	843	4.7	0.673	8.0	LOS B	9.1	65.9	0.74	0.63	46.7			
9	R	82	1.3	0.673	12.8	LOS B	9.1	65.9	0.74	0.73	45.7			
Approac	h	1133	3.8	0.673	8.6	LOS B	9.1	65.9	0.70	0.64	46.8			
West: Pa	arr St We	est												
10	L	92	1.1	0.595	25.2	LOS A	7.2	50.9	1.00	1.15	35.2			
11	Т	26	4.0	0.598	24.6	LOS A	7.2	50.9	1.00	1.15	35.2			
12	R	144	0.7	0.593	29.4	LOS A	7.2	50.9	1.00	1.15	34.0			
Approac	h	262	1.2	0.593	27.5	LOS A	7.2	50.9	1.00	1.15	34.5			
All Vehic	cles	2569	3.6	0.673	12.9	LOS B	9.1	65.9	0.78	0.76	43.3			

Level of Service (Aver. Int. Delay): LOS B. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: Thursday, 23 December 2010 10:56:31 AM Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.4.1498 www.sidrasolutions.com Project: I:\Projects\3004603 - South Leongatha ODP - Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Junction 2.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

. . SIDRA INTERSECTION

Movem	Movement Performance - Vehicles Demand Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	Turn	Demand Flow	HV %	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed			
South: S	South Gir	psland Hwy S	South	V/C	360		ven	111		perven	KIT#TI			
1	L	3	0.0	0.632	8.5	LOS B	7.4	53.8	0.52	0.61	47.8			
2	Т	774	4.8	0.610	7.8	LOS B	7.4	53.8	0.52	0.56	47.9			
3	R	7	0.0	0.614	12.1	LOS B	7.4	53.8	0.52	0.73	46.0			
Approac	h	784	4.7	0.610	7.8	LOS B	7.4	53.8	0.52	0.56	47.9			
East: Lo	cal St Ea	ast												
4	L	4	0.0	0.065	15.0	LOS A	0.5	3.4	0.78	0.78	42.1			
5	Т	2	0.0	0.064	14.1	LOS A	0.5	3.4	0.78	0.76	42.3			
6	R	29	0.0	0.065	18.6	LOS A	0.5	3.4	0.78	0.82	40.1			
Approac	h	36	0.0	0.065	17.9	LOS A	0.5	3.4	0.78	0.81	40.5			
North: S	outh Gip	psland Hwy N	orth											
7	L	40	2.6	0.580	7.4	LOS A	7.8	56.3	0.15	0.59	49.3			
8	Т	825	4.7	0.584	6.7	LOS A	7.8	56.3	0.15	0.50	50.0			
9	R	79	1.3	0.585	11.0	LOS A	7.8	56.3	0.15	0.80	46.3			
Approac	h	944	4.3	0.584	7.1	LOS A	7.8	56.3	0.15	0.53	49.6			
West: Lo	ocal Wes	t												
10	L	79	1.3	0.154	14.0	LOS A	1.2	8.7	0.82	0.84	43.3			
11	Т	2	0.0	0.150	13.1	LOS A	1.2	8.7	0.82	0.82	43.5			
12	R	3	0.0	0.150	17.5	LOS A	1.2	8.7	0.82	0.88	41.2			
Approac	h	84	1.3	0.154	14.1	LOS A	1.2	8.7	0.82	0.84	43.2			
All Vehic	les	1848	4.3	0.610	7.9	LOS A	7.8	56.3	0.35	0.56	48.4			

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: Tuesday, 21 December 2010 10:48:06 AM Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.4.1498 www.sidrasolutions.com Project: I:\Projects\3004603 - South Leongatha ODP - Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Junction 3.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

. . SIDRA INTERSECTION

Movem	Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: S	South Gip	psland Hwy	South										
1	L	3	0.0	0.632	8.9	LOS B	8.4	61.0	0.61	0.63	47.5		
2	Т	809	4.8	0.661	8.2	LOS B	8.4	61.0	0.61	0.59	47.4		
3	R	7	0.0	0.670	12.5	LOS B	8.4	61.0	0.61	0.73	45.8		
Approac	h	820	4.7	0.661	8.2	LOS B	8.4	61.0	0.61	0.59	47.4		
East: Lo	cal St Ea	ist											
4	L	4	0.0	0.073	16.8	LOS A	0.6	3.9	0.83	0.81	40.6		
5	Т	2	0.0	0.073	16.0	LOS A	0.6	3.9	0.83	0.79	40.8		
6	R	29	0.0	0.073	20.5	LOS A	0.6	3.9	0.83	0.84	38.8		
Approac	h	36	0.0	0.073	19.8	LOS A	0.6	3.9	0.83	0.83	39.1		
North: S	outh Gip	psland Hwy N	North										
7	L	40	2.6	0.645	7.5	LOS B	9.7	70.2	0.17	0.58	49.2		
8	Т	903	4.8	0.646	6.7	LOS B	9.7	70.2	0.17	0.49	49.9		
9	R	104	1.0	0.647	11.0	LOS B	9.7	70.2	0.17	0.78	46.3		
Approac	h	1047	4.3	0.646	7.1	LOS B	9.7	70.2	0.17	0.52	49.5		
West: Lo	ocal Wes	t											
10	L	82	1.3	0.172	14.5	LOS A	1.4	10.0	0.85	0.86	42.8		
11	Т	2	0.0	0.175	13.6	LOS A	1.4	10.0	0.85	0.85	43.0		
12	R	3	0.0	0.175	18.1	LOS A	1.4	10.0	0.85	0.89	40.9		
Approac	:h	87	1.2	0.172	14.6	LOS A	1.4	10.0	0.85	0.86	42.8		
All Vehic	les	1991	4.3	0.661	8.1	LOS A	9.7	70.2	0.39	0.57	48.1		

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections.

Roundabout Capacity Model: SIDRA Standard.

Processed: Tuesday, 21 December 2010 11:02:30 AM Copyright © 2000-2010 Akcelik & Associates Pty Ltd SIDRA INTERSECTION 5.0.4.1498 www.sidrasolutions.com Project: I:\Projects\3004603 - South Leongatha ODP - Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Junction 3.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Moverr	ient Pe	erformance	- Vehicles								
MaxID	T	Demand	111/	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: 9	South G	ven/n ippsland Hww	%	V/C	sec		ven	m	_	per ven	km/n
1		127	1.0	0.408	0.6	1054	4.5	32.7	0.66	0.74	47.2
1 2	с т	127	1.0	0.490	9.0	LOSA	4.5	32.7	0.00	0.74	47.2
2		303	4.0	0.499	0.9	LOSA	4.5	32.7	0.00	0.70	47.0
3		17	1.2	0.502	13.4	LUSA	4.5	32.7	0.00	0.82	45.0
Approad	h	506	3.7	0.499	9.2	LOSA	4.5	32.7	0.66	0.72	47.0
East: Lo	cal Roa	ad									
4	L	10	1.1	0.056	12.3	LOS A	0.4	3.0	0.76	0.74	44.5
5	Т	2	4.8	0.057	11.7	LOS A	0.4	3.0	0.76	0.72	44.7
6	R	23	1.3	0.056	16.2	LOS A	0.4	3.0	0.76	0.79	42.1
Approach 35		35	1.5	0.056	14.9	LOS A	0.4	3.0	0.76	0.77	42.8
North: S	outh Gi	ppsland Hwy									
7	L	30	1.1	0.573	8.1	LOS A	6.5	46.4	0.50	0.59	47.7
8	Т	416	4.8	0.572	7.4	LOS A	6.5	46.4	0.50	0.54	47.7
9	R	299	1.0	0.571	12.0	LOS A	6.5	46.4	0.50	0.70	45.4
Approac	ch	744	3.1	0.571	9.3	LOS A	6.5	46.4	0.50	0.61	46.8
West: L	ocal Ro	ad									
10	L	320	1.0	0.465	10.0	LOS A	4.1	29.2	0.72	0.77	46.4
11	т	2	4.8	0.442	9.4	LOS A	4.1	29.2	0.72	0.74	46.2
12	R	105	1.0	0.466	13.9	LOS A	4.1	29.2	0.72	0.83	44.1
Approac	ch	428	1.0	0.465	11.0	LOS A	4.1	29.2	0.72	0.78	45.8
All Vehi	cles	1713	2.7	0.571	9.8	LOS A	6.5	46.4	0.61	0.69	46.5

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections. Roundabout Capacity Model: SIDRA Standard.

Processed: Tuesday, 11 January 2011 3:17:50 PM SIDRA INTERSECTION 5.0.2.1437 Project: I:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Revised (2011 Jan)\Junction 4.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Movem	ent Pe	erformance	- Vehicles								
May IP	Turn	Demand	ш\/	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
	Turri	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: S	South G	ven/n ippsland Hww	<u>%</u>	V/C	sec	_	ven	m	_	per ven	Km/n
1		73	1.0	0 445	9.8		3.8	27.5	0.67	0.76	47.2
2	т	336	1.0	0.445	0.0		3.0	27.5	0.67	0.70	47.0
2	ь В	16	4.0	0.443	9.2 13.7		3.0	27.5	0.07	0.72	47.0
Approac	<u> </u>	425	1.5	0.444	13.7		3.0	27.5	0.07	0.04	44.7
Арргоас		425	4.0	0.445	9.4	LUSA	3.0	27.5	0.07	0.75	47.0
East: Lo	cal Roa	ad									
4	L	9	1.2	0.056	12.6	LOS A	0.4	3.0	0.77	0.75	44.2
5	Т	2	4.8	0.055	12.0	LOS A	0.4	3.0	0.77	0.73	44.4
6	R	23	1.3	0.056	16.5	LOS A	0.4	3.0	0.77	0.79	41.9
Approach 34		34	1.5	0.056	15.3	LOS A	0.4	3.0	0.77	0.77	42.6
N a stille i O											
North: S	outh G	ppsiand Hwy	1.0	0.500	0.0		0.0	40.4	0.47	0.57	47.0
1	L	31	1.0	0.582	8.0	LUSA	6.8	49.1	0.47	0.57	47.8
8	1	406	4.8	0.586	7.3	LOSA	6.8	49.1	0.47	0.52	47.9
9	R	352	1.0	0.586	11.9	LOSA	6.8	49.1	0.47	0.69	45.5
Approac	h	789	3.0	0.586	9.4	LOS A	6.8	49.1	0.47	0.60	46.7
West: Lo	ocal Ro	ad									
10	L	338	1.0	0.453	9.8	LOS A	4.0	28.3	0.69	0.75	46.6
11	Т	2	4.8	0.442	9.1	LOS A	4.0	28.3	0.69	0.72	46.4
12	R	87	1.1	0.454	13.7	LOS A	4.0	28.3	0.69	0.81	44.3
Approac	:h	428	1.0	0.454	10.6	LOS A	4.0	28.3	0.69	0.76	46.1
All Vehic	cles	1676	2.7	0.586	9.8	LOS A	6.8	49.1	0.58	0.68	46.5

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections. Roundabout Capacity Model: SIDRA Standard.

Processed: Tuesday, 11 January 2011 3:19:54 PM SIDRA INTERSECTION 5.0.2.1437 Project: I:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Revised (2011 Jan)\Junction 4.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Movem	lovement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South: S	South G	ippsland Hwy	1									
1	L	5	2.0	0.316	10.8	LOS A	2.4	17.4	0.44	0.65	57.8	
2	Т	328	4.8	0.311	8.8	LOS A	2.4	17.4	0.44	0.58	56.8	
3	R	38	1.1	0.312	15.9	LOS A	2.4	17.4	0.44	0.81	54.3	
Approac	h	372	4.4	0.311	9.5	LOS A	2.4	17.4	0.44	0.61	56.5	
East: Bo	ags Ro											
4	L	17	1.2	0.128	12.3	LOS A	0.9	6.3	0.60	0.72	56.3	
5	Т	54	1.2	0.128	11.4	LOS A	0.9	6.3	0.60	0.68	56.4	
6	R	46	1.1	0.128	15.9	LOS A	0.9	6.3	0.60	0.81	50.8	
Approach		117	1.2	0.128	13.3	LOS A	0.9	6.3	0.60	0.74	54.1	
North: S	outh Gi	ppsland Hwy										
7	L	39	1.1	0.379	8.0	LOS A	3.3	23.6	0.32	0.56	51.2	
8	Т	389	4.8	0.380	7.2	LOS A	3.3	23.6	0.32	0.50	51.8	
9	R	101	1.0	0.380	13.4	LOS A	3.3	23.6	0.32	0.77	48.0	
Approac	h	529	3.8	0.380	8.4	LOS A	3.3	23.6	0.32	0.55	51.0	
West: S	imons L	ane										
10	L	131	1.0	0.188	10.6	LOS A	1.4	9.6	0.57	0.69	55.1	
11	Т	32	1.0	0.189	11.0	LOS A	1.4	9.6	0.57	0.67	56.7	
12	R	22	1.4	0.188	17.0	LOS A	1.4	9.6	0.57	0.81	52.9	
Approac	h	185	1.1	0.188	11.4	LOS A	1.4	9.6	0.57	0.70	55.1	
All Vehic	cles	1204	3.3	0.380	9.7	LOS A	3.3	23.6	0.42	0.61	53.4	

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections. Roundabout Capacity Model: SIDRA Standard.

Processed: Tuesday, 11 January 2011 3:27:10 PM SIDRA INTERSECTION 5.0.2.1437 Project: I:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Revised (2011 Jan)\Junction 5.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Movem	Movement Performance - Vehicles													
		Demand	1.15.7	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Average			
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
0 11 0		veh/h	%	v/c	sec		veh	m		per veh	km/h			
South: S	South G	ippsland Hwy												
1	L	5	2.0	0.298	10.6	LOS A	2.3	16.9	0.40	0.64	58.1			
2	Т	328	4.8	0.300	8.6	LOS A	2.3	16.9	0.40	0.56	57.2			
3	R	38	1.1	0.299	15.7	LOS A	2.3	16.9	0.40	0.80	54.4			
Approac	h	372	4.4	0.300	9.3	LOS A	2.3	16.9	0.40	0.59	56.8			
East: Bo	ags Rd	l												
4	L	17	1.2	0.122	12.1	LOS A	0.8	6.0	0.58	0.70	56.4			
5	Т	48	1.1	0.122	11.2	LOS A	0.8	6.0	0.58	0.67	56.5			
6	R	50	1.1	0.122	15.7	LOS A	0.8	6.0	0.58	0.80	50.9			
Approach		115	1.1	0.122	13.3	LOS A	0.8	6.0	0.58	0.73	54.0			
North: S	outh Gi	ppsland Hwy												
7	L	39	1.1	0.358	7.9	LOS A	3.0	21.6	0.30	0.56	51.4			
8	Т	392	4.8	0.358	7.1	LOS A	3.0	21.6	0.30	0.49	52.0			
9	R	70	1.0	0.358	13.3	LOS A	3.0	21.6	0.30	0.78	48.1			
Approac	h	502	4.0	0.358	8.0	LOS A	3.0	21.6	0.30	0.54	51.4			
West: Si	mons L	ane												
10	L	48	1.1	0.097	10.5	LOS A	0.7	4.7	0.54	0.66	55.3			
11	т	28	1.1	0.097	10.8	LOS A	0.7	4.7	0.54	0.64	57.0			
12	R	20	1.0	0.097	16.8	LOS A	0.7	4.7	0.54	0.79	53.1			
Approac	h	96	1.1	0.097	11.9	LOS A	0.7	4.7	0.54	0.68	55.3			
All Vehic	les	1085	3.5	0.358	9.4	LOS A	3.0	21.6	0.38	0.59	53.6			

Level of Service (Aver. Int. Delay): LOS A. Based on average delay for all vehicle movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Degree of Saturation. Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement. Roundabout LOS Method: Same as Signalised Intersections. Roundabout Capacity Model: SIDRA Standard.

Processed: Tuesday, 11 January 2011 3:27:10 PM SIDRA INTERSECTION 5.0.2.1437 Project: I:\Projects\3004603 - South Leongatha ODP – Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Revised (2011 Jan)\Junction 5.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Sth Leongatha, Option 1, Junction 6 PM Peak Stop (Two-Way)

Movem	Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
East: Sir	nons La	ane												
5	Т	50	4.9	0.037	0.7	LOS A	0.3	1.9	0.31	0.00	69.0			
6	R	13	1.6	0.037	10.9	LOS A	0.3	1.9	0.31	1.12	58.2			
Approac	h	63	4.2	0.037	2.8	LOS A	0.3	1.9	0.31	0.23	66.8			
North: Local Roa		ad												
7	L	12	1.8	0.019	12.9	LOS A	0.1	0.6	0.30	0.84	48.0			
9	R	4	2.4	0.019	12.5	LOS A	0.1	0.6	0.30	0.90	48.4			
Approac	h	16	2.0	0.019	12.8	LOS A	0.1	0.6	0.30	0.86	48.1			
West: Si	mons L	.ane												
10	L	34	1.2	0.099	10.1	LOS A	0.0	0.0	0.00	1.32	57.1			
11	Т	153	4.8	0.099	0.0	LOS A	0.0	0.0	0.00	0.00	80.0			
Approac	h	187	4.1	0.099	1.8	LOS A	0.0	0.0	0.00	0.24	75.1			
All Vehic	les	265	4.0	0.099	2.7	NA	0.3	1.9	0.09	0.28	70.6			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Degree of Saturation.

Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement.

Processed: Tuesday, 11 January 2011 3:30:11 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION

www.sidrasolutions.com

SIDRA INTERSECTION 5.0.2.1437 Project: I:\Projects\3004603 - South Leongatha ODP - Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Revised (2011 Jan)\Junction 6.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Site: J6 Option 1 Stop

Sth Leongatha, Option 2, Junction 6 PM Peak Stop (Two-Way)

Movem	Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back c Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
East: Sir	mons L	ane												
5	Т	1	9.1	0.010	0.0	LOS A	0.0	0.3	0.01	0.00	79.2			
6	R	13	1.6	0.010	10.2	LOS A	0.0	0.3	0.01	0.76	56.9			
Approac	h	14	2.3	0.010	9.4	LOS A	0.0	0.3	0.01	0.70	58.4			
North: Lo	ocal Ro	ad												
7	L	12	1.8	0.010	11.7	LOS A	0.0	0.3	0.01	0.99	48.6			
9	R	0	0.0	0.010	11.2	LOS A	0.0	0.3	0.01	1.03	49.0			
Approac	h	12	1.8	0.010	11.7	LOS A	0.0	0.3	0.01	0.99	48.6			
West: Si	mons L	ane												
10	L	0	0.0	0.001	10.1	LOS A	0.0	0.0	0.00	1.51	57.1			
11	Т	1	9.1	0.001	0.0	LOS A	0.0	0.0	0.00	0.00	80.0			
Approac	h	1	8.3	0.001	0.8	LOS A	0.0	0.0	0.00	0.13	77.7			
All Vehic	les	27	2.3	0.010	10.0	NA	0.0	0.3	0.01	0.80	54.0			

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Degree of Saturation.

Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement.

Processed: Tuesday, 11 January 2011 3:30:11 PM

Copyright © 2000-2010 Akcelik & Associates Pty Ltd

SIDRA INTERSECTION

www.sidrasolutions.com

SIDRA INTERSECTION 5.0.2.1437 Project: I:\Projects\3004603 - South Leongatha ODP - Traffic Study\Engineering\Traffic & Transport\SIDRA Assessment\SIDRA files\Revised (2011 Jan)\Junction 6.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Bass Hwy

Sth Leongatha, Option 1, Junction 7 (Simons Lane) PM Peak Stop (Two-Way)

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	f Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed		
		veh/h	%	v/c	sec		veh	m		per veh	km/h		
South: B	ass Hw	у											
2	Т	251	4.7	0.133	0.0	LOS A	0.0	0.0	0.00	0.00	80.0		
3	R	85	1.0	0.087	12.0	LOS A	0.4	3.1	0.44	0.74	54.4		
Approac	h	336	3.8	0.133	3.0	LOS A	0.4	3.1	0.11	0.19	72.3		
East: Sin	nons La	ane											
4	L	26	1.2	0.116	17.9	LOS A	0.5	3.7	0.56	0.88	44.1		
6	R	26	1.2	0.116	17.8	LOS A	0.5	3.7	0.56	1.00	44.2		
Approac	h	51	1.2	0.116	17.9	LOS A	0.5	3.7	0.56	0.94	44.2		
North: Ba	ass Hw	у											
7	L	96	1.0	0.052	10.1	LOS A	0.0	0.0	0.00	0.71	57.1		
8	Т	297	4.8	0.157	0.0	LOS A	0.0	0.0	0.00	0.00	80.0		
Approac	h	393	3.9	0.157	2.5	LOS A	0.0	0.0	0.00	0.17	73.5		
All Vehic	les	780	3.7	0.157	3.7	NA	0.5	3.7	0.08	0.23	69.9		

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Degree of Saturation.

Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement.

Processed: Tuesday, 11 January 2011 3:41:32 PM SIDRA INTERSECTION 5.0.2.1437

Assessment\SIDRA files\Revised (2011 Jan)\Junction 7.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION Project: I:\Projects\3004603 - South Leongatha ODP - Traffic Study\Engineering\Traffic & Transport\SIDRA

Bass Hwy

Sth Leongatha, Option 2, Junction 7 (Parr Street) PM Peak Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: B	ass Hw	′y									
2	Т	251	4.7	0.133	0.0	LOS A	0.0	0.0	0.00	0.00	80.0
3	R	85	1.0	0.087	12.0	LOS A	0.4	3.1	0.44	0.74	54.4
Approac	h	336	3.8	0.133	3.0	LOS A	0.4	3.1	0.11	0.19	72.3
East: Parr Street											
4	L	26	1.2	0.116	17.9	LOS A	0.5	3.7	0.56	0.88	44.1
6	R	26	1.2	0.116	17.8	LOS A	0.5	3.7	0.56	1.00	44.2
Approach		51	1.2	0.116	17.9	LOS A	0.5	3.7	0.56	0.94	44.2
North: Bass Hwy											
7	L	96	1.0	0.052	10.1	LOS A	0.0	0.0	0.00	0.71	57.1
8	Т	297	4.8	0.157	0.0	LOS A	0.0	0.0	0.00	0.00	80.0
Approac	h	393	3.9	0.157	2.5	LOS A	0.0	0.0	0.00	0.17	73.5
All Vehicles		780	3.7	0.157	3.7	NA	0.5	3.7	0.08	0.23	69.9

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Degree of Saturation.

Approach LOS values are based on the worst degree of saturation (v/c ratio) for any vehicle movement.

Processed: Tuesday, 11 January 2011 3:41:32 PM SIDRA INTERSECTION 5.0.2.1437

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

SIDRA INTERSECTION Project: I:\Projects\3004603 - South Leongatha ODP - Traffic Study\Engineering\Traffic & Transport\SIDRA

Assessment\SIDRA files\Revised (2011 Jan)\Junction 7.sip 8000617, SMEC AUSTRALIA PTY LTD, SINGLE

APPENDIX E – TURN WARRANTS

Source: Arndt and Troutbeck (2006).

Source: Arndt and Troutbeck (2006).

APPENDIX F – ENTRY AND EXIT TERMINALS

Source: Based on VicRoads (2005).